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Abstract 

Background Passive acoustic telemetry is a method used to quantify residency within an array of receivers, but this 
technology has limitations for capturing complex behaviors in sharks: pulse delays and detection range drop-offs 
in near-shore habitats. This study addressed residency calculation methodologies by examining visitation qualifier 
functions (thresholds) in commonly used R packages.

Methods Random walk models simulated the mismatch between detections on acoustic receivers and modeled 
shark movements, by testing 30-min, 1-h, 2-h and 24-h visit thresholds to compare gaps between shark detections 
at different transmitter settings (1- and 5-min delays). We also modeled tracks of transient sharks to show how these 
animals may interact with passive acoustic receivers differently than resident individuals.

Results Our results suggested that longer transmitter (tag) pulse delays (1–5-min standard for sharks and larger 
fish) required short (< 30 min) visit thresholds, as they reduced variability in residency times. Consequently, using 
thresholds of less than 2 h increased the number of counted visits that stemmed from the same events. Similarly, 
the 5-min delay also predicted greater elapsed residency times than did the real path. Our directional walks sent 
transient sharks through a receiver at 0–1 and 1–2 m/s; under these scenarios, transmitters were unlikely to ping twice 
(default minimum visit qualifier) if 5-min pulse delays were set on their transmitters (16.4%), whereas 1-min delays did 
frequently (84.2%). This indicated that a 5-min delay may misrepresent residency time for transient sharks.

Conclusions Thresholds and detection qualifiers manually set during passive acoustic surveys can bias residency 
and visitation results, and careful consideration should be applied on the basis of the life history (residential 
or transient) of the target species.
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Background
Sharks play pivotal ecological roles in marine ecosystems 
by maintaining the balance of prey fish communities and 
stabilizing the trophic structure of coral reefs [1]. The 
conservation of sharks promotes marine biodiversity, 
top-down regulation processes, and ecosystem health 
[17], and evaluating their movement and residency 
patterns helps us understand the functionality of reefs 
and connectivity between marine protected areas (MPAs) 
[1, 2, 26]. Acoustic telemetry (AT) enables scientists 
to observe these population dynamics across many 
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different taxa [4] and is primarily used to understand 
migration patterns, home-range, seasonal residencies, 
and behavioral states that are difficult to study via other 
conventional methods like mark and recapture, or 
baited cameras [5]. Residency is a metric that quantifies 
site use as an individual’s presence or absence [6] and 
is somewhat arbitrary based on what the researcher 
has defined as a particular site, jurisdiction, or region. 
However, AT tags (transmitters) have programmed 
delays when sending out signals to a receiver [7], and 
the effects of pulse delays on the precision of residency 
time estimates remain poorly described. Coded tags are 
commonly set for 1–5  min between pulses, a decision 
primarily meant to maximize battery life, as shorter 
delays reduce battery life longevity exponentially, and to 
avoid signal collisions, where multiple tags are deployed 
in the same study area [7].

In general, AT studies include a calculation of a 
residency index, calculated as the proportion of detection 
events relative to the total time an individual is available 
for detection (i.e., hourly, daily, weekly, and monthly) 
[1, 8]. Scientists record the number of visitations at a 
given site, defined as multiple detections (2 is standard) 
of an individual animal at the site within a specified 
time period [8]. The methods used for calculating these 
metrics vary depending on the study site, duration, scale, 
focus species, and overall research goals [3, 9, 10]. For 
long-term residency studies, the use of ‘daily presence or 
absence’ suffices to evaluate long-term space occupancies 
in sharks and thereby the simplest approach to 
determining overall site residency can be accomplished 
by dividing the number of days on which the individual 
was detected at a given site by the entire study period 
in days [1]. For finer-scale studies of residency or use 
of a particular site, data resolution from pulse delay 
and how residency is calculated, may have a significant 
impact. Accurately assessing shark residency at particular 
locations is challenging to perform on the basis of hourly, 
daily, weekly, or monthly movement patterns with a small 
number of deployed receivers [3].

Residency is punctuated by periods of absence, which 
are inferred by missed detections and data gaps. One of 
the most commonly used packages that evaluates animal 
movement and residency patterns, VTrack [9], filters 
out singular detections (false positives), and calculates 
residency by sorting the data into specific site visit 
events for scientists to extract individually. The number 
of visits and the duration per visit can then be analyzed 
for metrics of habitat utilization [9]. Especially for studies 
that use visits numerically as a measure of site preference, 
determining what qualifies as a new arrival versus a 
subsequent detection during the same event raises a 
caveat; sharks that move outside the receiver range show 

up as empty spaces in detection timelines. Depending 
on the thresholds set to determine new visits, these 
data gaps may be misinterpreted as missed detections, 
and transient sharks may be missed altogether. The 
VTrack package uses an {iResidenceThreshold}, which 
determines how many detections are considered a 
visit, and an {iTimeThreshold}, which determines how 
much time between these detections can pass before 
the event of a separate arrival to a site is considered [9]. 
These functions are used to optimize event recognition 
by determining how many minutes must pass between 
consecutive ping occurrences to constitute a new arrival. 
Therefore, it is assumed that gaps falling above these 
thresholds mean that a shark left the area. Their function 
also enhances site-specific residency data by subsetting 
individual residency scores for several visitation events 
(found in the residenceslog table output), which compiles 
the time from all events. Absence-time thresholds are 
set at default values of 2 detections per 24  h but are 
adjustable to whatever values the scientist considers 
are appropriate [9]. Receiver detection ranges and array 
design may influence these decisions, since the number 
of detections will likely increase with a larger detection 
range, and therefore, it is important that scientists 
standardize receiver ranges throughout an array as not to 
skew absence-time thresholds.

There is a need to provide guidance on visit 
thresholds, how adjusting them may affect the validity 
of residency scores, and how this may alter how we 
interpret shark movement behaviors. To evaluate these 
uncertainties in visit qualification and overall telemetry 
accuracy, here we (1) quantify how pulse delay affects 
residency times and visit counts, (2) reveal the main 
drivers of inaccuracy between acoustic receiver data 
and actual shark behavior day-to-day, (3) generate new 
theories for interpreting abacus plot data (commonly 
used illustrations of detection timelines) for singular 
visits, and (4) provide decision-making guidelines for 
setting visit thresholds.

Methods
Through R-Studio’s base package, we coded a two-
dimensional constrained random walk model to simulate 
the movement of individual sharks in a semi enclosed 
environment. Varying shark swimming speeds and turn 
angles replicated sharks moving through or around 
habitat areas, and transmitter–receiver communications 
(tag signals) were collected by recording grid-positions 
throughout their paths. In addition to evaluating daily 
site visits and shark residency proportions for telemetry 
data sets, this adjustable model also offers a theoretical 
methodology design for testing AT technology.
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Random walk model
Sharks were programmed to begin their paths at a 
random point between the outer boundaries of the 
receiver (between red and orange), which replicated a 
shark that had just entered the receiver. We elected this 
to maximize shark-receiver interactions, and to reduce 
the number of non-visit events. This model operates 
within a domain of 50  km2 of available space for sharks to 
move in- and outside of the receiver. If the shark reached 
the study area boundary, it was redirected back toward 
the center by programming 180° direction changes for 
brief (1-min) stretches after contact with any boundary. 
Our model enforced a vertical boundary at x = 0, where 
the shark’s position was adjusted to remain at or above 
x = 0, simulating land at negative x values. Each random 
walk simulation lasted 24  h to account for continuous 
movement during an entire day and night, and with 
each time step representing 1  s of real time, the shark 
moved in a random direction in the two-dimensional 
grid. Receiver depth was an unnecessary consideration, 
since we assumed that receivers placed by divers along 
coastlines are able to reach all available depths within 
their horizontal range [7, 25]. More complex scenarios 
representing different habitats were considered, but 
intentionally left out to keep the modeled scenarios 
simplistic. Following [25], depth likely has a factor in 
detection probabilities, but the relationship between 
the effect size on detection probabilities and depth 
class is inconclusive. The movement direction was 
randomly chosen between 0 and 2π radians at each step 
(providing 360° of direction change), and the velocity 
was also randomized and sampled from a uniform 
distribution between 0 and 1  m/s swimming speed 
[11, 12, 24]. The system included one receiver placed 
near a linear coastline, with a resulting semicircular 
detection range, defined by three concentric zones within 
the semicircle, that provided a probability of missed 
detections depending on the distance from the center. 
These probabilities are derived from the literature on 
detection probability drop-offs in VEMCO receivers [7, 
13]: inner zone (pink): 125-m radius with 100% detection 
probability. Middle Zone (Orange): between 125- and 
187.5-m radii with a 75% detection probability. Outer 
Zone (Red): between 187.5- and 250-m radius with 
50% detection probability. We assumed that weather 
conditions did not alter drop-off probabilities throughout 
the simulation.

Residency data extraction
We performed 1,000 random walks under these 
conditions, counting the number of true and missed 
detections, the proportion of true detections overall 

(residency proportion), the visit count, and the amount of 
time for each visit. Following the generation of each walk, 
detection points were placed along the paths according 
to the delay and detection drop-offs. Gaps were classified 
as occurrences of a shark leaving the receiver range and 
re-entering OR missed detections along the abacus plot, 
and gap durations averaged the number of seconds for 
each gap (enabling a distinction between separate visits 
and an extended visit). Residency for 1-s, 1-min, and 
5-min delays was calculated by dividing the total number 
of detections by the number of possible detections 
during each trial. We analyzed the “inaccuracy” of the 
receiver settings by comparing residency scores from the 
1-min and 5-min delays to the score of the base scenario 
(real-time tracking). For example, if the proportion of 
residency for 1-min delay data was 0.30 and the 1-s delay 
was 0.50, the inaccuracy score would equal 0.2; thus, our 
inaccuracy scores assigned a value to the amount of error 
between AT data and actual shark detection proportions.

Visit thresholds and residency times
Visit thresholds were chosen to be 30 min, 1 h, 2 h, and 
24  h to cover the most common settings from previous 
publications using VTrack [2, 3, 14]. We extracted 
the presence and absence data for each delay from 
our random walks. Depending on the experimental 
thresholds, a consecutive number of false detections 
constituted a separate visit, absence strings equal to 
or greater than each threshold of absence was required 
before counting a new visit. The residency time was 
marked as the duration of seconds from the first detection 
to the last detection of each visit string, and all visit 
durations were compiled to calculate the total residency 
time. This system allowed us to compare the visit counts 
and elapsed residency times between each delay, with 
the actual path in seconds. We set these functions to 
contain a minimum detection requirement which only 
counted events of 2 or more detections as separate 
arrivals and illustrated the differences in visit counts 
and residency times through modeled correlations and 
figures. We ran 2-way analysis of variance (ANOVA) for 
each iteration of the delay and threshold with residency 
times, Poisson regressions for visit counts (skewed 
distribution), Tukey’s HSD test for pairwise comparisons 
of transient visits, and Levene’s test for homogeneity of 
residency proportions. Levene’s test was chosen to check 
the equality of variances across groups to ensure the 
assumptions of ANOVA could be met. All statistical tests 
were conducted with a significance threshold of 0.05.

Directional nonrandom walks
We simulated two different types of transient shark 
encounters (15  min long each with 1,000 trials) and 
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compared a highly transient individual with a slower 
swimming speed and greater turn angle. The fast shark 
swam at randomized speeds generated every 1 s between 
1 and 2 m/s, with turn angles randomized every second 
between pi/144 (near straight line). The slower shark 
was set between 0 and 1  m/s with turn angles of pi/36 
(directional but with wider turn radius) on the basis 
of [15, 24], for average shark cruising speeds driven by 
metabolism. These models operated under the same 
receiver ranges and boundaries as the prior residency 
models (Fig. 1).

Results
Compared with the base scenario, both the 1-min and 
5-min delays produced different detection proportions. 
For the 5-min delay, the ANOVA results indicated a 
significant effect of residency (DFs = 338, F = 8.866, 
p = 0.0025) on inaccuracy. The average inaccuracy scores 
for the 1-min and 5-min delays were 0.20 (95% CI [0.1963, 
0.2147] and 0.20 (95% CI [0.1970, 0.2155]), resulting 
in residency being underestimated by both delays by 
approximately 20% compared with the actual shark path 
when the number of detections over time was used as 
the calculation for residency. Correlations and fitted 
quadratic models to differentiate the inaccuracy scores 
of the 5-min delay settings (residual standard error: 
0.06698 on 343 degrees of freedom; multiple R-squared: 
0.3721; F-statistic: 101.6 on 2 and 343 DFs, p < 2.2e-16) 
revealed that nearly 37% of the variance in inaccuracy 
could be explained by the residency proportion alone. 
However, with residency as an indicator, inaccuracy 
increased with respect to margin of error toward higher 
residency proportions. The inaccuracy with highly 
residential sharks (50–99% residency) produced more 
variability than sharks with a residency between 0 and 
50% (Levene’s test p value = 2.2e-16), reducing the 
predictability of inaccuracy at higher residencies. For 
this modeling, Quadratic models showed the lowest AIC 
(− 4474.875), indicating the best fit to our data followed 
by the second-best model (Generalized Linear Models) 
with an AIC of − 3318.181.

Thresholds and visit counting
All 3 thresholds were set under 24  h, and the number 
of visits by a shark with 5-min transmitter pulse delays 

was overcalculated (p < 0.001 each; see Table 1). Between 
the 1-min and 5-min delays, visit counts differed for 
each threshold (p < 0.001 each), indicating that 5-min 
delays generated higher visit counts than 1-min delays 
across the board. Referring to Table  1: for the 30-min 
threshold, the mean visit counts are as follows: 1-s delay: 
2.68 (SD = 1.39); 1-min delay: 2.76 (SD = 1.43); and 5-min 
delay: 3.25 (SD = 1.66). For the 1-h threshold, the mean 
visit counts are as follows: 1-s delay: 2.18 (SD = 0.98); 
1-min delay: 2.23 (SD = 1.01); and 5-min delay: 2.34 
(SD = 1.04). For the 2-h threshold, the mean visit counts 
are as follows: 1-s delay: 1.84 (SD = 0.73); 1-min delay: 
1.87 (SD = 0.72); and 5-min delay: 1.92 (SD = 0.73).

Elapsed visit residency times
Residency times differed across different thresholds (half 
hour, 1 h, and 2 h; p < 0.0001) and delay types (p < 0.001). 
We discovered that visit time increased with longer set 
thresholds, particularly for 5-min delays. The 5-min 
delays produced longer visit times across each threshold, 
and the variability between all delays was the lowest 
under a 30-min threshold. We found a difference in visit 
time between the 5-min path and the actual path, which 
was highest under the 2-h threshold and lowest under the 
30-min threshold (Levene’s test: p = 0.001). Interquartile 
range (IQR) was used to measure statistical dispersion, 
along with means for averages. Based on Fig.  2, for the 
half-hour threshold, the mean visit times were as follows: 
actual: 988.04  min (IQR = 702.75); 1  min: 927.35  min 
(IQR = 707.00); and 5  min: 1,011.41  min (IQR = 760.00). 
At the 1-h threshold: actual: 988.44 min (IQR = 706.52); 
1  min: 927.27  min (IQR = 701.50); and 5  min: 
1,048.18  min (IQR = 735.00). For the 2-h threshold: 
actual: 1,046.73  min (IQR = 696.06); 1  min: 968.35  min 
(IQR = 703.50); and 5 min: 1,191.64 min (IQR = 635.00).

Directed random walks: transient sharks
In our directional models, migratory sharks presented 
shorter lengths of time inside a receiver than did resident 
sharks did, as predicted, and their abacus plots presented 
varied detection counts between 1- and 5-min delays. We 
modeled this behavior and found that the success rate 
of 2-detection minimums disproportionately affected 
the higher delays (5  min). Overall, slower sharks spent 

Fig. 1 Random walk trial example simulating a shark swimming in a receiver. 1.1 shows the path illustrated in blue with a starting point (black 
point “A”) and ending point (black point “B”) throughout the 24-h trial. The semicircles represent each detection range for one acoustic receiver 
placed along a shoreline. The paths visualized an example route taken randomly from our simulated shark individual data sets. 1.2 shows detections 
and missed detections (missed = red, detected = green). The random walk parameters were as follows: semicircle diameter: 500 m; swimming speed: 
0–1 m/s (changed every 1 s); trial duration: 86,400 s (1,440 min; 24 h); and steps: turn angle randomized every 1 s of swim time

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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an average of 6.1 min inside the receiver, whereas faster 
sharks spent 3.1 min (p > 2.2e-16).

Significant differences were identified in detection 
counts among the different shark movement behavior 
types and delays (ANOVA, F(3, 3212) = 2780, p < 0.001; 
Fig.  3). Pairwise comparisons via Tukey’s HSD test 
revealed that fast swimming sharks with 5-min delays 
had significantly fewer detections than those with 
1-min delays (mean difference = −  2.68 detections, 
95% CI −  2.87– −  2.49, p < 0.001). Slower sharks with 
1-min delays generated higher detection counts than 
faster sharks with 1-min delays (mean difference = 3.50 
detections, 95% CI 3.31–3.69, p < 0.001). Slower sharks 
with 1-min tags also had significantly more detections 

than those with 5-min tags (mean difference = 5.38 
detections, 95% CI 5.19–5.57, p = 0.001), suggesting that 
shorter delays increased the likelihood of a transient visit 
being counted.

The probability of a 5-min delay transmitter being 
detected at least twice with highly transient (fast) 
individuals was 16.4%, whereas 1-min tags increased the 
probability to 85.2%. We confirmed that the delay with a 
shark moving at 2 m/s would fail a 2-detection minimum 
requirement 84% of the time, whereas the 1-min delay 
would fail for only 15% of visits under our simulated 
detection radius. We concluded that sharks may easily 
pass through a 500-m read range without being detected 
twice; therefore, the tag settings may control whether a 
visit is counted or not. Transient (faster) sharks spent an 
average of 2.9  min less inside the receiver than slower 
ones did and, as a result, would have captured fewer site 
visits with a 2-detection minimum (Fig. 3).

Discussion
Our results indicate that there is a nonnegligible error in 
AT data driven by high tag delay settings with low visit 
thresholds. Evaluations of diel behavior, habitat usage, 
and site fidelity for sharks or otherwise should consider 
species dispersal and mobility, appropriate technology 

Table 1 Visit counts under different threshold (rows) and 
detection delays (columns)

Values are mean ± standard deviation. Standard deviation (SD) was a measure of 
dispersion for our set of values

Threshold Actual 1 min 5 min

Half hour 2.68 ± 1.39 2.76 ± 1.43 3.25 ± 1.66

One hour 2.18 ± 0.98 2.23 ± 1.01 2.34 ± 1.04

Two hours 1.84 ± 0.73 1.87 ± 0.72 1.92 ± 0.73

Fig. 2 Frequencies of visit times with their means (points) are presented across each time threshold and delay type (colors) in the ridgeline plot 
for 8991 observations. Mean points are placed along the x-axis lines for each y-axis group (thresholds), and the logarithm of residency times were 
measured in seconds
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settings, and the potential for errors in analysis and 
interpretation. We encourage scientists to consider 
swim speeds, space use, and receiver ranges before 
concluding interspecies site usage. Some characteristics 
of sound propagation through water and their 
relation to environmental factors (i.e., meteorological, 
oceanographic and topographic) are reported to have 
a substantial effect on detection probability in AT [22]. 
Meanwhile, a review of more than three hundred acoustic 
tracking studies revealed that only 48.6% of the studies 
included results from equipment ranging experiments 
[7, 16]. Receiver performance (i.e., range drop-offs) 
can fluctuate with water conditions to cause missed 
detections, while weather, tides, and other abiotic factors 
also ultimately impact detections and our analysis of them 
[7]. This study revealed that a single missed detection for 
a shark could disqualify an entire visit count from the 
data set or divide a visit into multiple visits by extending 
gaps in detections, leading to an underestimation of 
residency time of 20% and different/missed transient 
visit counts. These results were also influenced by user-
defined ping delays, showing that long delays for the 
conservation of battery life may disproportionately affect 
the accuracy of residency calculations. Scientists would 

ideally increase the quantity of receivers improving 
area coverage and reducing the impact that long tag 
delays have on residency calculations; however, adding 
additional receivers may be expensive and difficult to 
install. While most scientists design arrays consisting 
of several receivers, the distance between each site and 
potential overlap between coverage ranges, can play a 
major role in overall residency times. Tag battery-life 
should also be considered. Opting for shorter delays 
(1 min) will limit the duration of a study [7] but improve 
data resolution and residency accuracy.

Sharks spending longer periods of time around the 
perimeter of the receiver may produce weaker resolution 
in their tracks because of range drop-offs. With this in 
mind, scientists using the “number of detections over 
time” as a metric of site fidelity should treat their results 
as underestimations if some (or all) of their sharks exhibit 
faster than average swimming speeds, or wider space 
use which could imply a shark spending considerable 
time in the outer receiver ranges. Differences in speed, 
direction changes, and pulse delays can inflate or deflate 
the residency characteristics observed in sharks. Longer 
thresholds > 2  h are estimated to produce less frequent 
but more accurate visit counts to the real shark path, 

Fig. 3 Histogram plots of detection count with 1-min and 5-min delays for slow (highly mobile) sharks and fast (transient) sharks. Five-min delays 
peaked at 1 detection for fast sharks, with peaks at 1 and 2 detections for slow sharks. One-min delays peaked at 3 and 4 detections for fast sharks 
and between 2 and 11 detections for slow sharks
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as shown in our results. In contrast, we found that 
30-min thresholds among different tag delays tend to 
create greater similarity in residency time calculations. 
Therefore, threshold adjustments specific to delay and 
swim behaviors may prevent residential and transient 
visit mismatches, exaggerated visit counts, and skewed 
residency times. Studies of diel behavior using hourly 
detection data and “number of hours spent at a site” 
variables [17–19] are directly affected by these findings. 
Both the tag delay and visit threshold may have inflated 
the visit counts, potentially skewing the hours spent at 
sites. When analyzing hourly residency patterns, these 
sources of potential error can result in misinterpretations 
due to these fine-scale miscounts (one extra visit counted 
earlier than expected could change the entire narrative 
of a study; see [20] for more on the limitations of diel 
pattern analysis in AT).

Notable increases in residency time were observed in 
delays from the 30-min threshold to the 2-h threshold. 
This pattern is likely attributed to the extended duration 
of the 2-h threshold, whereby two detections within the 
large time window are less likely to constitute a new visit 
(i.e., fewer visits = greater residency time, as we revealed). 
However, with a 5-min delay, the chance of these short 
detection strings occurring at the necessary delays to 
sustain a visit decreases, along with the missed detection 
probability. As a result, it is likely that shark movements 
and visits counted with 1-min delay data would be missed 
with a 5-min delay, leading to a decrease in residency 
time and visit count for that data set. While certain 
studies analyze visit count and duration synonymously 
[1], others contrast them to measure activity and time 
spent at each site [3]. This study revealed that visit counts 
are negatively correlated with total visit time and that 
higher thresholds increase this effect. To combat this in 
future studies, where visit count is the main response 
variable, scientists may wish to use higher thresholds 
(> 2  h) to mitigate variability with respect to their tag 
delays and focus species. Given that our models revealed 
that lower thresholds (30  min) reduced variability in 
elapsed visit duration, a lower threshold (< 30 min) would 
ultimately improve the comparability of visit durations 
between tag delays in studies focusing on elapsed visit 
time [10, 21].

Transient sharks of two different turn angles and 
swim speed criteria revealed significant probabilities 
of failing the two-detection minimum qualifier 
when passing through the receiver. The faster shark 
(1–2  m   s−1 + low turn radius) failed the 2-detection 
minimum requirement in 84% of the trials for 5-min 
delays, whereas the 1-min delay resulted in only 15% 
of visits failing the qualifier for the same shark. This 
finding suggests that longer tag delays increase the 

likelihood of skewing visit counts and residency times 
for transient sharks. Previous studies have shown that 
swimming speeds of sharks vary depending on species 
and water conditions [11]. Since visit counts were 
higher (3.31 ± 3.69) with slower moving sharks than 
with faster swimming sharks in our models, we would 
expect to see a difference in transient versus residential 
visit proportions between sharks with different cruising 
speeds.

Marine protected areas (MPAs), regions that are 
reserved and regulated by law to protect natural and 
cultural resources, effectively reduce human impacts 
on marine life and conserve biodiversity [26]. The 
effectiveness of introducing MPAs for protecting shark 
populations is not fully understood; however, studies 
have shown that MPAs protect the marine environment 
especially in complex habitats like coral reefs [17, 23]. 
The consequences of inaccurate analysis in the field of 
AT include inconclusive site preference and diel activity 
findings, as well as false conclusions for MPA coverage. 
For example, when designing or extending MPA 
boundaries, precise knowledge about ecological hotspots 
and high productivity zones is crucial to document prior 
given that the degree of MPA effectiveness is reliant on 
how much overlap exists between species movements 
and the area of spatial protection [17, 23]. Our findings 
suggest that small differences in how researchers 
handle their detection data—such as filtering criteria 
(transient versus residential sharks), temporal binning, 
or gap handling, could lead to substantial variations 
in calculated residency patterns. This variability may 
confound the ecological patterns researchers aim to 
investigate with study-specific methodologies. This 
raises important questions about the comparability of 
acoustic telemetry studies and their ecological impacts. 
Any mismatch between studies with deflated or inflated 
residency times will affect result interpretation, and lead 
scientists to draw false conclusions about shark behavior.

The accuracy of detection counts can vary on the 
basis of delay settings. While higher thresholds may be 
necessary for calculating residential visits and times, 
transient events must be accounted for under different 
criteria. We recommend adjusting the minimum 
detection qualifier on the basis of the tag delay and 
a species’ average swimming speed to improve the 
integrity of visit counts. Some R packages like VTrack 
sort transient visits into their own category [9]; 
however, “transient” may have different definitions 
based on species swimming behavior, which may 
result in different transient visit counts from each tag 
setting. Ultimately, a higher detection minimum when 
dealing with transient and faster swimming sharks 
may improve the comparability of cross-study analysis, 
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where different tag settings (from 1 to 5 min) are used 
and where species of varying swim patterns are under 
scrutiny.

Conclusions
Small differences in how researchers handle their 
detection data—such as filtering criteria (transient versus 
residential sharks), temporal binning, or gap handling, 
could lead to substantial variations in calculated 
residency patterns, leading to a misinterpretation of 
ecological hotspots around an MPA. An analysis of 
visitation qualifiers and threshold settings revealed the 
following takeaways: (1) different tag delay settings (1 or 
5 min) produce different visit counts for the same shark 
path and threshold. (2) Longer pulse delays generally 
inflate the number of visits and their duration; however, 
at times, this results in fewer visits, as 2 consecutive 
missed detections cause a missed visit that would have 
been picked up by the other delay settings. (3) Half-hour 
thresholds result in more visit counts but lower visit 
durations along the same path than longer thresholds do 
(1 h, 2 h), since individuals with more visits swam in and 
out of the receiver range for short bursts of time rather 
than long periods. (4) The longest thresholds (1–2  h) 
showed the lowest deviance between the number of 
site visits of 5-min and 1-min delays; however, the total 
duration of visits was more comparable between delays 
using 30-min thresholds. Therefore, electing a higher visit 
threshold may improve the uniformity of the number of 
visits among different delay tags, while lower thresholds 
may create greater residency time evenness between 
different tag delays.

Abbreviations
AT  Passive acoustic telemetry
MPAs  Marine protected areas
ANOVA  Analysis of variance
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