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METHODOLOGY

A supervised model to identify wolf behavior 
from tri‑axial acceleration
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Abstract 

Background  In wildlife studies, animal behavior serves as a key indicator of the impact of environmental changes 
and anthropogenic disturbances. However, wild animals are elusive and traditional GPS studies only provide limited 
insight into their daily activities. To address this issue, behavior classification models have increasingly been used 
to detect specific behaviors in wildlife equipped with tri-axial accelerometers. Such models typically need to be 
trained on data from the target species. The present study focuses on developing a behavioral classification model 
tailored to the grey wolf (Canis lupus) and encompassing a variety of ecologically relevant behaviors.

Methods  We collected data from nine captive wolves equipped with collar-mounted tri-axial accelerometers record-
ing continuous acceleration at 32 Hz (“fine-scale”) and averaged acceleration over 5-min intervals (“activity”). Using 
simultaneous video observations, we trained Random Forest models to classify wolf acceleration data into specific 
behaviors. We investigated the potential limits to the generalizability of these models to unlabeled data through indi-
vidual-based cross-validation.

Results  We present: (1) a model classifying fine-scale acceleration data (32 Hz) into 12 distinct behaviors (lying, trot-
ting, stationary, galloping, walking, chewing, sniffing, climbing, howling, shaking, digging and jumping) with a class 
recall of 0.77–0.99 (0.01–0.91 in cross-validation), (2) a model classifying activity data (5-min averages) into 3 behav-
ior categories (static, locomotion and miscellaneous) with a class recall of 0.43–0.91 (0.39–0.92 in cross-validation). 
Although classification performance decreased following cross-validation, recall scores for lying, trotting, station-
ary, galloping, walking and chewing individual behaviors (as well as static and locomotion categories) remained 
above 0.6. Classification performance was consistently poorer for rare behaviors, which constituted less than 1.1% 
of the training dataset.

Conclusions  We demonstrate the use of collar-mounted accelerometer to distinguish between 12 behaviors and 3 
behavior categories in captive wolves, at fine-scale (32 Hz) and averaged 5-min resolutions, respectively. We also dis-
cuss the generalizability of the two models to free-ranging settings. These models can be employed to support future 
behavioral studies examining questions such as conflict mitigation, wolf responses to human disturbances, or specific 
activity budgets.
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Background
In wildlife studies across the world, some recurring con-
straints consistently limit data collection: wild animals 
are elusive, accessibility and detectability are poor, and 
field conditions unpredictable [5, 97]. Data on physiol-
ogy and behavior are especially difficult to obtain at fine 
temporal and spatial scales, yet they are key indicators of 
human impact on wildlife [8, 13, 89, 91], both in funda-
mental research and for implementation of conservation 
strategies [55]. Over the past decades, bio-loggers have 
been increasingly used to fill in this gap, with ever-grow-
ing precision and versatility, now allowing for the collec-
tion of high-resolution spatiotemporal information [2, 8, 
15, 16, 65, 66].

In this context, the use of high-resolution data col-
lected from animal-borne accelerometers to detect ani-
mal behavior has emerged as a promising solution to 
several problematics. Location data from GPS trackers 
have historically been used for behavioral studies, but 
limitations in device autonomy and available resolutions 
typically constricted data collection and resulting stud-
ies to large-scale habitat use and individual-scale speed 
[97]. Fine-scale accelerometers are also battery and stor-
age-demanding, which can limit their use to one year at 
a time under the best scenarios: however, at a compara-
ble scale (e.g., yearly, with resolution as high as 1 min or 
more), turning to raw acceleration allows for collection of 
more precise information than with GPS data, provided 
analysis methods are available. Once calibrated by asso-
ciating acceleration signal patterns with observed body 
movements [47, 65], supervised machine learning algo-
rithms such as Random Forests can be used to predict 
behaviors on unlabeled datasets from the target species 
[11, 20, 49, 73]. The availability of high-resolution accel-
eration data thus opens new possibilities for behavioral 
studies at finer scales [24, 60].

However, even though machine-learning potentially 
offers a high level of accuracy in such behavioral detec-
tion, and has been recently used in various species and 
fashions [6, 14, 29, 47, 49, 53, 56, 62, 64, 65, 67, 71, 73, 
83, 92, 94], they most often remain constricted to few 
behaviors with a limited level of detail. The present study 
focuses on the grey wolf (Canis lupus), a species that 
has been extensively studied in various aspects of spatial 
ecology, from broad landscape use [61] to specific hunt-
ing strategies [78], often relying on extensive observa-
tions [58] or decades of GPS tracking [13, 79], and aims 
at identifying 12 ecologically significant behaviors.

In a study from 2022, the Overall Dynamic Body 
Acceleration (ODBA) from nine captive wolves fit-
ted with 32-Hz accelerometers was used to detect 5 
behavior categories (resting, stationary, walking, highly 
active, and running [12], allowing to quantify day and 

night behavior patterns during breeding, pup rear-
ing and recruitment seasons, in Denali National Park. 
Other studies targeted specific questions such as detec-
tion of kill sites [68], or use calibration based on domes-
tic dogs [20]. Wolves are involved in human–wildlife 
conflict across their whole range [22, 25, 27, 31, 52, 80], 
which are often fueled by perceived lack of appropriate 
management response [45, 46, 57, 59, 76, 86, 93]. The 
ability to detect specific behaviors with ever-growing 
level of detail holds promises in improving tailored 
management responses: for instance, preventive pre-
diction of conflict hotspots (which is often used in con-
servation management practice, see, e.g., [36, 48], has 
been refined over the last decades by the implementa-
tion of connected systems allowing, for instance, real-
time alerts of raiding of agricultural areas [75]. Some 
of these systems now provide early detection through 
behavioral cues [40, 87] or even use detection-triggered 
repellents [1, 28, 38, 39, 90], and real-time treatment 
of acceleration data from an algorithm embedded in a 
collar to send out alerts based on behavior detection 
is achievable today [44]. The use of behavioral cues in 
early conflict detection has proven effective in prevent-
ing animal casualties [7], and unequivocal fine-scale 
behavior detection from acceleration data could further 
enhance such use, moving toward systems tailored to 
specific situations.

Provided an accurate and fine-scale behavioral detec-
tion algorithm is available, such systems could be used to 
bring up new insight into wolf ecology, but also adapted 
to alleviate conflicts related to wolf depredation on 
domestic animals, since automatic repellents and guard-
ing systems have been demonstrated to be effective on 
short and long term, respectively [10, 25, 37]. Therefore, 
in this study we develop a behavioral classification model 
for detecting a maximum number of ecologically relevant 
behaviors to accommodate both behavioral research and 
conservation needs. We first present a model predicting 
12 distinct behaviors, calibrated with supervised machine 
learning using video footage and tri-axial acceleration 
data sampled at 32 Hz from captive wolves.

However, this fine-scale setup is not the norm in most 
monitoring frameworks, where devices recording sum-
marized bi- or tri-axial accelerometry (“activity”) are typ-
ically used. These devices have been available for longer, 
are less costly, less power- and storage-hungry, and align 
with most monitoring or spatial studies only requiring 
a few positions every day. Hence, we complementarily 
present a model predicting 3 behavior classes from cali-
bration with such activity data, to be used on datasets 
commonly collected during routine monitoring, and dis-
cuss the need and hindrances to developing replicability 
between study sites, programs, species, and frameworks.
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Methods
Data collection
Data collection took place at the Wildlife Science Center 
in Minnesota, from October to December 2018. We stud-
ied three family groups in separate enclosures, each con-
sisting of a pair of adults and three to six younger wolves. 
We collected data from three 1.5-year-old wolves in each 
enclosure, one enclosure at a time (i.e., a total of 9 indi-
viduals, see Additional file A.I). The enclosures were flat 
with no vegetation. All subject animals were immobilized 
with ketamine and xylazine, weighed, their fur dyed on 
specific body parts for individual identification, and fit-
ted with GPS collars featuring store-on-board tri-axial 
accelerometers (Vectronic VERTEX Plus V 2.1, Vec-
tronic Aerospace Inc, here 1.74%–2.61% of body mass). 
The acceleration modules were set to record (1) tri-axial 
acceleration (surge, horizontal, X; sway, lateral, Y; and 
heave, vertical, Z, see Fig.  1) at 32  Hz and 4  g, and (2) 
summarized tri-axial acceleration over 300  s (Vectronic 
Aerospace Inc, 2024). Each enclosure was equipped with 
four IR cameras (Cromorc Wireless Security 1.3 MP, Cro-
morc Inc.) at the corners.

Data processing
Processing of raw data
For our analysis we used both raw tri-axial acceleration 
continuously at 32  Hz (hereafter “fine-scale” datasets 
and corresponding models), as well as tri-axial accelera-
tion averaged across 300  s (hereafter “activity” datasets 
and corresponding models, Vectronic Aerospace Inc., 
2024), and continuous video footage for each enclosure 
for two to three days [see Additional file A.I]. Since most 

previously published ethograms are only relevant for 
wolves in free-ranging conditions [54], and to account for 
biologically relevant behaviors displayed by the subject 
wolves, we designed a specific ethogram based on obser-
vations from the video footage, which we used as a refer-
ence for labeling [see Additional file A.II]. One observer 
used software BORIS (v.7.4.1; [33]) to label behaviors 
with start and stop times, from video segments of 30 min 
every 3 h throughout the filming periods (total: 8 h per 
individual), with additional observations of rare behav-
iors at feeding time. To improve prediction accuracy 
during model training, we only classified clear, distinct, 
non-overlapping behaviors with unambiguous identifica-
tion of the individual. We did not include state-transition 
behaviors.

Behaviors selection and formatting
The ethogram was composed of 12 behaviors (Fig.  2) 
based on ecological significance and potential for prac-
tical use in wildlife research and management: locomo-
tion (walking, trotting, galloping), interaction with the 
environment (jumping, climbing, shaking, digging), and 
with food and conspecifics (chewing, sniffing, howling). 
We partitioned static states into lying (lying down immo-
bile), and stationary (sitting, lying down while moving 
the head, or standing), since all of the latter presented 
high similarity in acceleration metrics. Hereafter, we call 
“rare” behaviors with a prevalence inferior to 1%: gallop-
ing, sniffing, climbing, howling, shaking, digging and jump-
ing. Acceleration data and behaviors were matched using 
their time stamps.

In “fine-scale” models, we compared a model featur-
ing all 12 behaviors (model A, Table  1), to a model in 
which rare behaviors were grouped into a “miscellane-
ous” category (model A.1, Table 1). When analyzing the 
300-s averaged activity dataset, we tested different ways 
of grouping the 12 behaviors into fewer ecologically and 
practically meaningful categories to account for the com-
parably short duration of individual behaviors (Table 1). 
For instance, we included a 5-category model (Model 
C), intending to preserve explicit detection of certain 
behaviors of ecological interest despite low classifica-
tion success (namely, separating running and walking, 
and including chewing). Each 300-s interval was labeled 
according to the comparative duration of all fine-scale 
behaviors or categories observed within it, with the label 
corresponding to the behavior or category that occupied 
the longest duration.

To correct for sampling imbalance caused by the inclu-
sion of rare behaviors, we incorporated a relative weight 
calculated as the proportion of each behavior relative to 
the overall dominant behavior (fine-scale: Plying = 0.637, 

Fig. 1  Orientation of the accelerometer contained in the collar fitted 
on a subject wolf. X: surge; Y: sway; Z: heave; pitch and roll: vertical 
and lateral orientation across a 180° angle, respectively
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and activity: Pstationary = 0.237, detail of sampling propor-
tions is provided in Additional file A, Table III).

Decision variables
In line with Shepard et  al. [83], we used biologically 
meaningful variables derived from the raw acceleration 
data, characterizing the orientation and movement of 
the neck [99]. Aside from standardized mean tri-axial 

acceleration values (x, y, z), we included mean pitch and 
roll representing vertical and lateral orientation across a 
180° angle, respectively (Fig.  1), dynamic tri-axial accel-
erations (Dx, Dy and Dz), mean overall dynamic body 
acceleration (ODBA), mean vector of dynamic body 
acceleration (VEDBA), mean magnitude of acceleration 
(AMAG) and variance of all previous variables (V) [detail 
of equations in Additional file  B.I]. To calculate these 

Fig. 2  Acceleration signatures of the 12 fine-scale wolf behaviors targeted for classification using machine-learning algorithms. Raw surge (x, red), 
sway (y, yellow) and heave (z, blue) are displayed on a main 15-s intervals grid with colored bars indicating the corresponding observed behavior
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acceleration-derived variables, we tested several running 
means (S) ranging from 1 to 30 s. Based on performance 
during model fitting, the comparative duration of behav-
iors (e.g., Fig.  2), and the high mobility of the wolf as a 
species, we used a 1-s running mean for all analyses.

Model building
We built a Random Forest (RF) multi-class classification 
algorithm [11, 23, 51, 63], using R package h2o [34]. We 
trained a behavioral classifier with 200 trees to balance 
explanatory power and computational cost [69], using an 
80–20 randomized split keeping behavior class propor-
tions for the training and testing sets, respectively [26, 30] 
and a one-versus-all approach [74]. To alleviate potential 
overfitting and gain a better understanding of the model’s 
potential in classifying unlabeled data, we performed a 
leave-one-individual-out cross-validation, with a final 
performance score averaged across the 9 wolves [4, 100]. 
All analyses were performed on R version 4.3.3 [70].

Model performance
As we aimed at achieving the best identification of behav-
iors displayed by unseen free-ranging individuals, we 
mainly based our performance assessment on individual 
class recall (i.e., proportion of true positives predicted out 
of each class) and precision (i.e., proportion of true posi-
tives out of all positive predictions) [5]. We also investi-
gated log-loss (quantifying the uncertainty of a classifier 

by penalizing false classification) and relative variable 
importance (based on how much the overall squared 
error decreased when a variable was selected to split on 
during the tree building process). We visualized decision 
variables using packages plotly version 4.10.4 [85] and 
ggplot2 version 3.5.0 [95], and model results with package 
networkD3 version 0.4 [35]. The final results incorporate 
general training and cross-validation into what we will 
call the “main models” (“MM”). However, we will focus 
our discussion on extracted cross-validation results (in 
the following, “cross-validation” or “CV”) as a reflection 
of situations with high individual variation, which can 
limit the potential of the main model.

Results
Behavioral characteristics
Of the 12 behaviors selected for classification, two (sta-
tionary and lying) contributed 87.7% of all 32-Hz accel-
eration datapoints. The subsequently most represented 
behaviors were trotting (5.7%), walking (2.9%) and chew-
ing (2.6%). The remaining behaviors were rare and made 
up 1.1%. Prevalence in activity categories followed the 
same pattern. Behavior prevalence varied between indi-
viduals, and jumping, climbing, and digging, were not dis-
played at all by 1, 2, and 3 individuals, respectively. Due 
to technical limitations during footage analysis in one 
enclosure, 3 individuals contributed less than the others 
to the overall datasets [see Additional file A.III].

Table 1  Results of Random Forest model building for classifying wolf behaviors from acceleration data

Models are presented in descending order of overall recall scoring. Models retained for potential use in free-ranging settings are in bold. However, only top-models 
A and B are discussed further in this study. All behaviors not explicitly named are grouped under “miscellaneous”. Only models A and F feature all 12 behaviors 
separately. Fine-scale: 32-Hz acceleration data; Activity: 300 s summarized acceleration; CV: cross-validation metrics

Model Behaviors No. of 
internal 
trees

Mean depth Mean leaves Recall Recall CV Log-loss Log-lossCV

Fine-scale models

A.1 Lying–trotting–stationary–galloping–walk‑
ing–chewing–miscellaneous

1400 20 26,997 0.960 0.869 0.338 1.05

A Lying–trotting–stationary–galloping–walk‑
ing–chewing–sniffing–climbing–howling–shaking–
digging–jumping

2400 20 16,075 0.954 0.862 0.459 4.912

Activity models

B Stationary (lying, stationary, howling)–locomotion 
(walking, trotting, galloping)–miscellaneous

600 17.5 147 0.847 0.841 1.66 1.268

C Stationary (lying, stationary, howling)–running 
(trotting, galloping)–chewing–walking–miscella‑
neous

800 17 130 0.822 0.809 2.02 1.765

D Stationary (lying, stationary, howling) –running (trot-
ting, galloping) –walking–miscellaneous

800 16.3 113.6 0.821 0.814 4.295 3.578

E Stationary (lying, stationary, howling) –locomotion 
(walking, trotting, galloping) –chewing–miscellaneous

1000 16.2 111.2 0.854 0.841 5.86 3.546

F Lying–trotting–stationary–galloping–walk-
ing–chewing–sniffing–climbing–howling–shaking–
digging–jumping

2400 11 70.9 0.704 0.674 5.781 12.151
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Fine‑scale models (32 Hz)
While results of the main 12-behavior model returned a 
mean per-class recall of 0.88, with scores ranging from 
0.77 (shaking) to 0.99 (lying), the cross-validation results 
taken separately showed a mean per-class recall of 0.42, 
ranging from 0.01 (digging) to 0.91 (lying) (Model A, 
Fig.  3, details in Table  1). The behaviors classified with 
the best recall score were also the most represented in the 
dataset, with lying, stationary, and trotting scoring above 
0.75, and walking, galloping and chewing scoring between 
0.60 and 0.70. The remaining rare behaviors scored a 
recall lower than 0.1, except for sniffing (0.25). Between 
individuals, mean recall varied from 0.71 to 0.93. Preci-
sion scores were always lower than or comparable to 
recall, varying from 0.006 (digging) to 0.98 (lying). Finally, 
the most important variables to predict behaviors were 
mean pitch, x, ODBA, VEDBA, and z (Fig.  3 and Addi-
tional file  C.VIII). Grouping rare behaviors together in 
a reduced model (Model A.1, details in Table 1) did not 
significantly improve recall or precision for the remain-
ing behaviors.

Plotting head pitch against overall dynamic body accel-
eration (ODBA), which are among the most important 
variables, and useful for representing behaviors in a 2D 
space, shows variable levels of overlap between accelera-
tion datapoints for each behavior (Fig. 4).

Activity model (300 s)
During classification training for activity data, we com-
pared models with various behavior groupings. The 
simplest 3-category model (static, locomotion and mis-
cellaneous, Model B, Table 1) was the most performant, 
with per-class recall scores of 0.92, 0.77 and 0.44, respec-
tively (0.92, 0.73 and 0.39 in cross-validation) (Fig.  3). 
Precision scores were lower than recall, the most preva-
lent behaviors in the dataset were classified best, and 
the most important variables for activity models were 
mean activity, AMAG, and mean sway (y). Model B also 
strongly relied on mean surge (x) [Additional file C.VIIi]. 
Amongst individuals, we obtained mean CV recalls rang-
ing from 0.48 to 0.88. We tentatively performed a leave-
one-out approach to enrich this simple 3-category model 
B with more behaviors, in a 5-category mixed model 
(Model C, stationary, running, walking, chewing, miscel-
laneous, Table  1). Albeit not improving walking scores 

compared to the full 12-behaviors model F, model C 
slightly improved chewing scores (per-class recall scores 
of 0.92, 0.81, 0.26, 0.51 and 0, respectively) (0.93, 0.77, 
0.16, 0.5 and 0 in cross-validation) [Additional file  C.
IV], and remained similar to model B in regard to perfor-
mance metrics.

Discussion
Model performance
From the Random Forest trainings, we obtained mod-
els able to discriminate between several combinations 
of ecologically and practically significant behaviors. We 
selected two of them for discussion and general use: one 
model (A) using 32-Hz data to identify 12 behaviors with 
recalls above 0.77 (of which 6 behaviors with a recall 
score above 0.6 in cross-validation), and one model (B) 
using activity data to identify 3 behavior categories, with 
static and locomotion behaviors scoring recalls above 
0.73 in both general model performance and cross-
validation. As we want to explore more specifically the 
potential caveats related to individual variation, in the 
following, we will only use cross-validation recalls unless 
otherwise specified.

Fine‑scale models
In the fine-scale model, recall scores per behavior were 
overall positively correlated with prevalence in the train-
ing set (Fig. 3), except for the running behaviors (trotting, 
0.90 and galloping, 0.71) which, albeit constituting 6% 
and 0.4% of the dataset, respectively, scored similarly to 
static behaviors (lying, 0.91 and stationary, 0.79) consti-
tuting 64% and 24% of the dataset. Other behaviors mak-
ing for less than 3% of the dataset returned mid-range 
recall scores (between 0.6 and 0.3). Notably, howling 
(prevalence 0.4%) scored below 0.1, and was frequently 
confused with being merely stationary, implying that the 
distinctive back and forth of the head on the z-axis when 
a wolf howls (Fig. 2) was overridden in the model by the 
comparably upright position of the head. This is consist-
ent with mean pitch and ODBA being the most impor-
tant decision variables in the model. Behaviors involving 
little body movement (e.g., lying or standing in different 
positions) have been reliably classified in previous stud-
ies and various species [29, 41, 47, 65, 67, 92, 94], but 
can be difficult to differentiate without reducing overall 

Fig. 3  Sankey diagram representations of cross-validation confusion matrices for models A and B, and variable importance. Observed behaviors are 
featured on the left with relative prevalence indicated in associated circles. Classification results are featured on the right, alongside performance 
metrics for each classified behavior. Internal links represent classification confusions. The length of external bars on each side and the thickness 
of internal links represent relative prevalence in sampling, confusions and classification. MM: main model; CV: cross-validation. (all confusion 
matrices are available in Additional files C.I–VII)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Fig. 4  Distribution of the main decision variables (pitch, ODBA) for each behavior in the fine-scale model. Distribution of calculated mean pitch 
(vertical angle of the head of a wolf ) and mean ODBA (overall dynamic body acceleration) for static (a–c), locomotion (d–f) and miscellaneous (g–l) 
behavior categories, for each 32-Hz datapoint. Each behavior within a category is represented in a consistent shade of grey, with target behavior 
in its associated color, to better highlight specificities and overlaps
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classification performance (e.g., by increasing the time 
window for smoothing running means, [47, 82]). This 
phenomenon seemed to occur between the three static 
behaviors, lying, stationary and howling.

Despite the use of a weighting factor, all rare behaviors 
(prevalence under 0.1%, i.e., climbing, shaking, digging 
and jumping) were poorly classified and frequently con-
fused with other behaviors, which is a common issue in 
imbalanced datasets. These behaviors also displayed very 
short duration without distinctive pattern (e.g., climbing 
and jumping, Fig. 2). Although it is recommended for the 
sampling frequency to be at least twice the frequency of 
the fastest behavior classified [14, 42], which is the case 
here (0.217  s for jumping), these behaviors might be 
too short compared to the 1-s time window chosen for 
the running mean and fail in providing the model with 
enough variation in the decision variables.

On the contrary, running behaviors, albeit displayed 
sometimes just as rarely (0.28% for galloping), showed 
high recall and precision in classification. These behav-
iors have longer duration and present more distinctive 
features (e.g., acceleration patterns or ranges of ODBA, 
see Figs. 2, 4) than comparatively more poorly classified 
behaviors. The overlaps in pitch/ODBA ranges between 
static behaviors or rare behaviors such as chewing, sniff-
ing and digging (Fig.  4g, h, k) seem correlated to the 
confusions observed in classification (Fig.  3A). The low 
prevalence and lack of clear characteristics in behaviors 
such as shaking or jumping (Fig. 4i, l) is correlated to poor 
recall. On the other hand, a clear distinction between 
ODBA ranges is visible in the better-performing locomo-
tion behaviors. We theorize that, while higher prevalence 
improves classification power by increasing the available 
information on behavioral variation during training [47], 
a longer duration of the target behavior and more distinc-
tive or stereotyped features might have a similar effect to 
that of a larger sample size. While classification of highly 
variable behaviors will benefit from larger sample sizes, 
classification of short behaviors could be improved by 
combining a classifier with automated detection relying 
on techniques such as Fast Fourier transform to filter out 
small body movements [29], KNN clustering identifica-
tion [5], or techniques such as changepoint analysis [9] 
or custom Boolean indicators [98] to better detect sig-
nificant shifts in parameters pointing towards a change in 
behavior.

Activity models
As the 300-s duration of activity intervals largely exceeds 
our recommended duration threshold, we did not expect 
to be able to predict short behaviors with high accuracy 
from this dataset. Activity models, however, remain 
important in that they allow us to make the most of 

long-term data series, even when data collection started 
with lower-resolution equipment or when resources such 
as money, time, battery or storage are limited. This makes 
interpretation and comparison possible between differ-
ent types of data, equipment and protocols. As group-
ing behaviors will affect classification performance and 
behavior inference [47], we chose to retain the simplest 
but most performant activity model (Model B), able 
to adequately classify locomotion states versus static 
states, as well as another model with clear differentiation 
between behaviors of ecological interest with the high-
est potential for reliable classification (Model C, Table 1). 
Provided that predictions from this last model are 
backed-up with sensible, contextual interpretation, they 
can allow for the detection of feeding events from chew-
ing behavior, and for the detection of potentially stressful 
or physically demanding events from running behaviors. 
Similarly, we chose to keep the full fine-scale model 
(Model A) for applications in free-ranging animals and 
future improvements rather than performing extensive 
grouping to improve recall scores (Model A.1, Table 1).

Generalizability
Behavior classification from biologging in free-ranging 
animals is inevitably confronted with several caveats. 
First, the definition of a behavior is rather fluid: prior 
to model training, we defined and classified only non-
overlapping behaviors to maximize classification power. 
However, many behaviors are highly variable in their 
amplitude, duration, or pattern [18] and are often dis-
played with additional organic and individual variability, 
such as partial displays or mixing (e.g., walking and sniff-
ing simultaneously). Realistically, acceleration signatures 
are also affected by the placement and type of acceler-
ometer device used (e.g., a collar will be biased towards 
head movements and might be more mobile compared to 
devices attached to the animal’s core such as backpacks 
or body-mounted tags), the transition between differ-
ent behaviors, as well as by variations in environmental 
features. We stress that the data used in this study were 
recorded in a captive setting, from wolves provided with 
deer carcasses and kept in flat enclosures with no veg-
etation and little enrichment (mostly concrete pipes). 
Notably, behavior prevalence reflects overall low activity 
levels in captive animals, feeding events, and patrolling of 
the enclosure, the most common behaviors displayed by 
social canids in captivity [19, 32, 84]. Consequently, our 
models lack information on movements influenced by 
features such as vegetation, topography, environmental 
obstacles (e.g., rocks or logs), movements through dif-
ferent media (e.g., water or snow), and entire behavior 
sequences (e.g., hunting and killing of prey). This can lead 
to poorer performance when using the model on unseen 
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data. Knowledge about wolf biology, environment, as 
well as the likely behavior confusions as quantified in this 
study, are key to ensure proper interpretation of behavior 
classifications in situ.

From the classifier itself, it would be useful to, for 
instance, extract true class probabilities in terminal 
leaves and base decisions on the target behavior distri-
bution compared to confused behaviors through a more 
quantitative approach [21, 72, 101]. Another solution to 
bridge the gap between model training on captive data, 
and predictions on unlabeled free-ranging data, is to 
use the information obtained from models built in cap-
tive studies to guide parameter selection, or interpret 
and generally validate behavior classification obtained 
from clustering with unsupervised machine learning 
approaches or Hidden Markov Models [3, 16, 17, 44, 50, 
77].

Improvements and recommendations for future work
Continuous development and optimization of existing 
models in ecology, conservation, and monitoring are an 
integral part of model building frameworks. In the case of 
the present study and in behavior classification models in 
general, increasing the training sample with new compa-
rable data from new individuals and rare behaviors would 
provide useful information on behavioral variation to 
improve model recall. Given the vast and variable data-
sets collected with accelerometer tags available today, it 
is even more important to carefully plan, select and tai-
lor protocols to the research question, the study species, 
environment, device location on the body, type of data 
available, and potential for future studies [81, 82, 92]. 
Protocols might also be improved, and model validated 
by using variables derived from other sensors [96], such 
as conductivity [65], body temperature [43], depth [16], 
or even footage from collar-mounted cameras or acous-
tic recordings from embedded microphones. As previ-
ously stated, with typically low sample sizes, a supervised 
model will most likely be undertrained on rare behaviors 
and on environmental and individual variation, result-
ing in poorer prediction power in free-ranging settings. 
Such caveats can only be reliably estimated by multiple 
trainings on unlabeled data, however, it is noticeable 
that only training and validation results are consistently 
reported in the literature. We therefore argue that such 
models should be systematically cross-validated to avoid 
overestimation of performance in free-ranging settings, 
and that individual cross-validation results should be dis-
cussed when evaluating performance [4, 44, 100], as they 
allow an estimation of the potential bias caused by indi-
vidual variation and can give perspective on the real pre-
dictive ability of a model.

Conclusions
Automated behavior identification in free-ranging 
animals, both in real-time and in delayed studies, has 
demonstrated usefulness and potential throughout the 
past decades [7, 39, 40, 48, 87, 88]. In this study, we 
were able to develop two behavior identification mod-
els for wolves, returning adequate classification for 
common behaviors when tested on captive data. These 
models can be used to predict behaviors in free-rang-
ing wolves, provided attention is given to the likeliest 
behavior confusions, especially in the behaviors for 
which these models show poor predictive ability. It is 
also necessary to remain aware of the variation in pre-
diction reliability introduced in free-ranging data. The 
impact of such limitations can be mitigated using con-
textual clues and knowledge on wolf biology, or the use 
of complementary models tailored specifically to target 
more efficiently specific rare behaviors of interest. In 
further refinement studies, complementary algorithms 
such as unsupervised clustering models could be used 
to more adequately identify similar acceleration signa-
tures in highly variable free-ranging situations.
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