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Abstract 

Background  Animal habitat use can be influenced by a suite of factors including intraspecific interactions 
and resource availability. The broad-snouted caiman (Caiman latirostris) is the largest crocodylian species distributed 
in freshwater environments of the Brazilian Atlantic Forest, where it inhabits many types of human-impacted and pre-
served habitats. Despite their ability to occupy ecologically different water bodies, little is known about their move-
ment patterns and their habitat use. We investigated the variation in movements and space use of adult caimans 
relative to sex, body condition, and environmental conditions in northeastern Brazil.

Methods  We conducted long-term capture surveys from 2013 to 2022 and used GPS telemetry from 2021–2022 
(n = 12 individuals) to assess movement patterns and home ranges of caimans and their habitat use based on Brown-
ian Bridge Movement Modeling (BBMM) and Generalized Linear Mixed Modeling (GLMM).

Results  Females ranged farther from reservoir’s forested margins, exploring a greater diversity of habitats dur-
ing the wet/non-reproductive season. During the dry/reproductive season, females remained close to nesting sites 
within forest fragments. The body condition of caimans did not change significantly over the wet and dry season, 
indicating that resources are available year-round. Caimans moved more at night than during daytime, likely due 
to nocturnal foraging and possibly avoiding periods of increased human activity. Female movement rates were positively 
associated with rainfall, in a pattern likely linked to nest attendance in the dry season. Male movement was positively 
correlated with reservoir volume in the wet season, possibly due to increased availability of habitats in comparison to dry 
periods and to decreased overlap with territories controlled by other males. Home ranges estimated as 95% utilization 
distributions were relatively small in both sexes, averaging 0.64 km2 (range: 0.001–1.4 km2), as were their core areas esti-
mated as 50% utilization distributions, which averaged 0.12 km2 (range: 0.0003–0.12 km2). Small core areas may indicate 
that caimans remain most of their time in a specific habitat, suggesting abundant resource availability or territoriality.

Conclusions  Our work reveals the complexity of social interactions and how caimans select their habitats in a highly 
altered environment.
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Background
Documenting how animals move across their habitats 
and define their home range is crucial to a better under-
standing of their behavior and demography, in addition 
to informed conservation planning. This becomes par-
ticularly urgent in areas subject to imminent effects of 
habitat fragmentation, climate change and biological 
invasions [62]. Individuals select their habitats based on 
a variety of factors and these choices involve innate and 
learned behaviors [36]. Decisions about movements and 
habitat use are often driven by essential needs such as 
foraging, mating, nesting, or protection from predators 
and human disturbance [40, 60, 82]. Cumulatively, these 
decisions affect the distribution and density of popula-
tions [7]. Habitat selection is a dynamic process that can 
vary, for example, across different spatial and temporal 
scales, across the diel cycle, across seasons, or through 
ontogeny [56]. Nonetheless, knowing how an animal 
makes movement and space use decisions can improve 
species management and conservation efforts.

Sex differences in habitat use and movement are com-
mon across many taxa. For instance, females may require 
more energy during the breeding seasons, engaging in 
foraging excursions around the period of egg matura-
tion or embryo nutrition and moving to habitats which 
are safest for their offspring when nesting or nursing [28, 
81]. In contrast, males may select habitats and main-
tain territories that maximize mating opportunities. In 
some species, males establish dominance hierarchies or 
defend territories to monopolize access to females or to 
prey resources, thereby relegating subordinate males 
to suboptimal habitats [30, 32, 89]. Dynamics related to 
sex-specific differences in space use can affect population 
dynamics and overall individual survival probabilities 
[83].

Crocodylians are semi-aquatic predators inhabiting 
freshwater and brackish environments, establishing cru-
cial connections that span across terrestrial and aquatic 
ecosystems [85]. They present complex social systems, 
and although poorly studied, evidence does exist of con-
siderable inter-individual variation in habitat use and 
movements within sexes [78, 86, 88]. During the breed-
ing season, their movement tactics are influenced by 
choosing more suitable habitats for mating and for nest-
ing [4, 15]. Additionally, as ectotherms, crocodylians 
respond to abiotic conditions, adjusting their movements 
in response to change in air or water temperatures, for 
example, by seeking out specific areas to bask in or cool 
down their body temperature [24, 63].

The broad-snouted caiman (Caiman latirostris Daudin, 
1801) is a medium-sized crocodylian found in large water 
bodies in  Brazil, Argentina, Bolivia, Paraguay, and Uru-
guay [84]. Across its geographic distribution, it is more 

abundant in lentic environments and in densely vege-
tated wetlands, using these areas for foraging, nesting, or 
protection [49, 69]. Nearly 70% of the global population 
is found within Brazil [22], with multiple populations 
impacted by human disturbance such as urbanization, 
agriculture, illegal hunting, fishing, and pollution [48, 
52, 90]. Genetic assessments revealed the presence of 
three distinct lineages of broad-snouted caiman in Bra-
zil, potentially isolated in the basins of the São Francisco, 
Rio Doce, and Paraná rivers [74]. Even within the same 
basins, there appears to be a limited number of breed-
ing individuals and genetic connectivity among popula-
tions, suggesting that the broad-snouted caiman exhibits 
a strong site fidelity or limited migratory behavior [91].

Broad-snouted caiman distribution is concentrated in 
the eastern portion of Brazil, especially within the Atlan-
tic Forest [22]. This phytogeographic domain stands as 
one of the most important biodiversity hotspots in the 
world and the second largest rainforest in South Amer-
ica, harboring 2.8% of global tetrapod diversity [26]. 
However, historical resource exploitation and deforesta-
tion have dramatically fragmented and diminished its 
coverage area, with estimates suggesting that only 28% 
of its original cover remains, distributed in small and 
isolated fragments [73]. Additionally, within the Atlan-
tic Forest, multiple water sources have been dammed 
for water supply in neighboring cities, altering hydro-
logical systems [65]. Here, we investigate the habitat use 
and movements of broad-snouted caiman in a human-
impacted Atlantic Forest habitat. Specifically, we use 
a 9-year time series of caiman captures (2013–2022) to 
investigate the role of sex in habitat use patterns, and 
environmental factors influencing adult caiman habitat 
preferences. Moreover, we made the first-ever telemetry-
tracking investigation conducted for the species in this 
region (2021–2022), addressing aspects of diel and sea-
sonal patterns in caiman movements, and home range 
sizes of adult individuals.

Methods
Study site
The Tapacurá Reservoir (hereafter “Tapacurá”) is an 
artificial lake created by the damming of the Tapacurá 
River, in the eastern State of Pernambuco, northeastern 
Brazil (8.043856° S, 35.195710° W) (Fig.  1A). The res-
ervoir was created in the 1970s, to increase the water 
supply to densely populated cities near the coast of 
Pernambuco [80]. The reservoir covers ca. 9 km2, and 
is under tropical humid climate, with a rainy period 
during autumn/winter, with ca. 1300  mm of rainfall 
[75]. The peak of the wet season is typically observed 
from March to August, when annual temperatures are 
lower. Tapacurá has undergone a series of pronounced 



Page 3 of 13Mascarenhas‑Junior et al. Animal Biotelemetry           (2024) 12:31 	

droughts and flood events. According to Pernambuco’s 
water monitoring agency (APAC, https://​www.​apac.​pe.​
gov.​br/), water levels have historically exhibited con-
siderable fluctuations, ranging from 3% capacity during 
the 1990s to 130% during 2011. At 100% capacity, water 
flows over spillways.

There are three fragments of Atlantic Forest surround-
ing the reservoir, named “Mata do Camucim”, “Mata do 
Toró” and “Mata do Outeiro de Pedro” (Fig.  1B). These 
fragments collectively cover an area of 5.4 km2 of native 

forest and are categorized as wildlife refuges by the Bra-
zilian government [67]. Within fragments, vegetation 
is mostly lowland semideciduous forest (Seasonally Dry 
Atlantic Forest—Pereira-Silva et al., [66]). Other regions 
surrounding Tapacurá are occupied by human settle-
ments, agriculture, or ranching. Artisanal fishing con-
ducted by local communities is common in the reservoir 
and hunting has also been documented alongside its for-
ested margins [54, 79].

Fig. 1  A The Tapacurá reservoir, an reservoir formed by damming of the Tapacurá River in São Lourenço da Mata, northeastern Brazil; B overview 
of the wildlife refuge Mata do Camucim, an Atlantic Forest fragment located in the north sector of Tapacurá; C GPS transmitter attached to an adult 
broad-snouted caiman (Caiman latirostris). The reservoir area is represented by the white line and forest fragments limits by yellow lines. Houses 
icons represents human habitations near reservoir’s margins and antennae icon indicate the location where the telemetry receiver station 
was installed

https://www.apac.pe.gov.br/
https://www.apac.pe.gov.br/
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Nocturnal surveys and captures
We conducted nocturnal eyeshine surveys [45] to detect 
and capture caimans from 2013 to 2022. These surveys 
occurred yearly, on a quarterly basis (two during the dry 
season and two during the wet season), spanning two 
to four nights in a week, starting just after sunset (ca. 
6:30 pm). We navigated the whole reservoir, covering all 
accessible areas using a 6.2-m boat fitted with a 15-hp 
engine that maintained an average speed of 8  km/h. At 
times, certain areas were inaccessible because of dense 
floating aquatic vegetation (mainly the common water 
hyacinth Pontederia crassipes), shallow water depths 
or the presence of many gillnets. Surveys were not con-
ducted under adverse weather conditions, such as heavy 
rainfall, thunderstorms, or intense fog.

Using a hand-held spotlight, we detected caimans at up 
to 600 m distance. We conducted caiman captures using 
locking cable snares, and restrained individuals with 
adhesive tapes or ropes, immobilizing their limbs, jaws, 
and covering their eyes with a cloth. We weighed each 
caiman using a 40,000  g scale, determined sex by cloa-
cal inspection [8] and measured their snout–vent length 
(SVL) using measure tapes. We considered as adults indi-
viduals with SVL > 67.9  cm, following the classification 
proposed by Leiva et al. [42].

We recorded the geographic position of each captured 
individual with a hand-held GPS (Garmin eTex), and 
collected information on habitat features in the field or 
based on updated satellite images. These were: the dis-
tance to the nearest forest fragment (in meters), distance 
to the nearest human residence (in meters), distance to 
the nearest reservoir’s margin (measured at the water 
edge; in meters), gillnet frequency in the area where we 
captured the caiman (see Mascarenhas-Junior et al., [53] 
for details; percentage), and water depth (in meters).

Telemetry
From July 2021 to July 2022, we tracked 12 adult caimans 
(eight females and four males) using transmitters with 
GPS technology (Nortronic Ltda, Natal). Transmitters 
weighed 220  g and measured 4.5 × 9 × 5  cm (24  months 
of lifespan estimated ) and were programmed to log 
data every six hours (400 mW of power and 6,500 mAh 
of autonomy). Transmitters used the LoRa Network sys-
tem, a wireless communication technology designed for 
long-range and low-power communication between 
devices (including Internet of Things [IoT] technology), 
to receive GPS data. On the reservoir’s north margin, we 
installed a waterproof station connected to an omnidi-
rectional antenna (see Fig.  1A), designed to receive the 
data stored in each transmitter operating in an ultra-high 
frequency (UHF) range of 903–918 MHz. Under optimal 
conditions and without physical barriers, the antennae’s 

range could extend up to 10 km. The station was powered 
by an external 12 V/3 A power supply. All data collected 
by the receiver station were subsequently uploaded to 
the Tago IO online platform (https://​tago.​io/) for further 
processing.

We attached transmitters onto the nuchal scutes of 
caimans using the methods of Brien et al. [10]. All trans-
mitters weighed less than 2% of an animal’s body mass to 
minimize potential effects on their natural behavior [51]. 
We subcutaneously injected a NaCl solution infused with 
2% lidocaine (1  ml of lidocaine per 7  ml of NaCl) into 
the dermal bones of the nuchal rosette of the caimans, 
located on the dorsal portion of the neck. After 10 min, 
we used a 2-mm drill to perforate the dermal bones. We 
then secured the transmitter with 2 mm nylon wire pass-
ing through three pairs of bone holes. We filled the gaps 
between the transmitter and caimans’ skin with Epoxy 
(Sikadur), maximizing the area of contact between the 
transmitter and the nuchal rosette. To mitigate pain and 
risk of inflammation, we administered a solution of 3% 
Meloxicam (0.2 mg/kg) in the forelimb muscles. Images 
of procedures are in Supplementary file 1. After 24 h of 
clinical observation, we released caimans at their location 
of capture (Fig. 1C).

During telemetry monitoring, we also collected abiotic 
variables associated with each GPS-transmitter loca-
tion. We obtained values for the air temperature (Cel-
sius degree) from a thermometer sensor attached in the 
transmitters and obtained daily reservoir volume (per-
centage of total reservoir’s water capacity) and rainfall 
(millimeters) from a database provided by APAC.

Data analysis
We used the R program [72] to conduct statistical analy-
sis and QGIS 3.28 to create maps [70]. When appropri-
ate, we conducted Shapiro–Wilk (SW) tests to verify data 
normality. We report quantitative results as mean val-
ues ± standard deviation (mean ± SD) and alpha level of 
0.05 as statistically significant (p value < 0.05).

To compare the values of habitat features between the 
dry and wet seasons for each sex separately, we con-
ducted Wilcoxon tests (Supplementary File 2). We also 
adapted Fulton’s relative condition index (Kn) for assess-
ing caiman body condition, considering the relation-
ship between weight and SVL. We used the formula 
Kn = (W/Lb]10n), where W represents the individual’s 
mass, L denotes SVL, b is calculated through ordinary 
least squares regression of W and L, and 10n is a multi-
plier to achieve a unit [64]. Kn is used as proxy for croc-
odylian fitness when interpreted by quartile system 
because skeletal length and volumetric measurements 
are positively correlated [64, 92]. For the specific pur-
pose of comparing differences in body condition between 

https://tago.io/
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seasons, we opted to proceed with the analysis using 
values from the solution of Kn equation, as all captured 
individuals were adults, reducing potential size class 
biasing. We made the Kn seasonal comparison perform-
ing a T-test (males SW = 0.99, p value = 0.991; females 
SW = 0.95, p value = 0.15).

We utilized a Tweedie generalized linear mixed mod-
eling (GLMM) framework to assess seasonal (wet/dry) 
differences in movements between males and females 
and the effects of abiotic covariates (air temperature, 
reservoir volume, and daily rainfall) on caimans’ move-
ments. We chose the Tweedie family for its flexibility in 
dealing with positively skewed and zero-inflated data 
[38], as on many occasions, caimans maintained their 
positions between consecutive valid transmissions. We 
averaged the values recorded for each abiotic variable 
between consecutive valid transmissions to obtain covar-
iates values. We tested multicollinearity between abiotic 
variables using a variance inflation factor (VIF) imple-
mented in the car package [27] in R. Before modeling, 
we standardized covariate data by centering each covari-
ate on its mean and scaling by its standard error. We 
tested whether the effects of abiotic covariates on move-
ment are different for females and males separately and 
whether the seasonal effect on movement differs between 
males and females (fixed effects). We also incorporated 
individual ID to account for individual-level variability 
in movement (random effects). The base model struc-
ture was: Movement ~ Air temperature:Sex + Reservoir 
volume:Sex + Daily rainfall:Sex + Sex*Season + (1|individ-
ual ID). For multi-model inference, we used the ‘dredge’ 
function of the MuMIn package [5], combining all covar-
iates and ranking models based on Akaike’s Information 
Criteria (AICC). We considered models with ΔAICC < 2 as 
the best models [12]. To calculate the averaged model, we 
used the ‘model.avg’ function in MuMIn, which consid-
ered parameter estimates from models within ΔAICC < 2. 
In assessing model performance, we used conditional 
effects (conditional R2) to measure the proportion of 
variance in the response variable explained by both fixed 
and random effects, and marginal effects (marginal R2) to 
evaluate the variance in the response variable explained 
only by fixed effects. We performed the Tweedie GLMM 
analysis using the package glmmTMB [11] in R using the 
function ‘glmmTMB’.

We applied the Brownian bridge movement model 
(BBMM) to evaluate the trajectories of caimans. The 
BBMM method considers consecutive discrete loca-
tions in a straight line-distance recorded in short-time 
periods to estimate the animals’ movement paths and 
probability of movement occurrence [37]. To calculate 
caimans’ trajectories, we used the ‘ltraj’ function from 
the adehabitatLT package in R [14]. Our data fulfilled 

the assumptions of Trajectory type II, in which reloca-
tions include information about time. Thus, we were 
able to calculate the number of distance-based bursts, 
defined as segments (in our case, in meters) of consecu-
tive valid relocations within a short-time period (in our 
case, a maximum interval of 12 h), during which move-
ment is relatively homogeneous. We further divided 
bursts into daytime intervals (with sunlight) and night-
time intervals (without sunlight) to calculate daily move-
ments. To account for differences in general movements 
during daytime and nighttime, we conducted a Wilcoxon 
test (SW = 13, p value = 0.014). For this specific analysis, 
we removed individuals F2 and F8 from daytime analysis, 
and F4 and F8 from nighttime analysis because transmit-
ters did not provide more than five valid coordinates.

We also used BBMM to calculate the area of use of 
caimans using the function ‘kernelbb’ in adehabitatHR 
package in R [13] to create a Utilization Distribution area 
(UD) based on kernels produced by the caimans’ trajecto-
ries and relocations. We set two smoothing parameters to 
implement the connection between relocations and build 
the UDs: 1) Sig1, which compute the individual’s motion 
variance parameter, associated to their individual speed 
[37], calculated by the function ‘liker’ to find parameter’s 
maximum likelihood, 2) Sig2, representing the impreci-
sion of the relocations and that should be previously 
known (in our case, five meters). We considered the 95% 
UD contour as the overall home range (HR) and the 50% 
UD contour as core area activity (CA) [41]. To ensure 
the robustness of our results, we included only individu-
als with a minimum of 30 valid relocations in the analy-
sis. After obtaining HR and CA values, we  determined 
the size of the overlapping areas for males and females, 
separately.

Results
Over 101 surveys, we spanned 07:34 ± 1:28 h in the field 
and covered a distance of 50.1 ± 7.4  km per night. We 
successfully captured 75 adults, including 14 recaptures. 
We did not find significant differences in the values of 
each habitat feature when comparing sexes and seasons, 
except for females’ distance to the closest forest fragment, 
which was higher during the wet season (523 ± 609  m) 
when compared to the dry season (209 ± 579 m) (W = 27, 
p value = 0.020, Fig. 2). We did not observe any significant 
seasonal differences in Kn among females (t = −  1.08, 
df = 22.36, p value = 0.291), averaging 2.14 ± 0.25 in the 
wet season and 2.25 ± 0.26 in the dry season. Males also 
did not present differences in Kn (t = −  0.54, df = 33.69, 
p value = 0.593), averaging 2.55 ± 0.43 in the wet season 
and 2.47 ± 0.39 in the dry season.

Individuals tagged with GPS transmitters in 2021 were 
tracked over a total of 355 days. During this period, we 
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tracked individual caimans for an average of 87 ± 72 days 
(range 18–221 days). We recorded an average of 90 ± 80 
(range 13–275) valid relocations for each caiman 
(Table 1). We collected a total of 647 bursts (300 during 
daytime and 347 during nighttime), ranging from 1–205 
per individual, except for individual F1, which did not 
produce any consecutive movement data. All transmit-
ters ceased operation before reaching their programmed 
lifespan, likely due to detachment or malfunction. We 
were able to recover two transmitters in the margins of 
reservoir following the coordinates available in Tago IO 
system. The other transmitters probably sank, and the 
signal was no longer transmitted.

We did not detect multicollinearity among abiotic 
covariates (VIF ≤|1.04|). Among 64 candidate mod-
els resulting from model selection process, one exhib-
ited value of ΔAIC < 2 (marginal R2 = 0.13, conditional 
R2 = 0.33; Table  2), without air temperature as a con-
tributing factor. According to Tweedie GLMM, overall 
mobility did not differ significantly between males and 
females (β = − 0.68, z = − 1.46, p value = 0.145), but males 
traveled further than females in the wet season (β = 1.36, 
z = 2.78, p value = 0.005) (Table  3). Daily rainfall had a 
significant and positive, albeit weak, effect on female’s 
movements (R2 = 0.01, β = 0.42, z = 2.81, p value = 0.005) 
(Table  3), while males’ movements were slightly posi-
tively affected by the reservoir volume (R2 = 0.04, β = 0.31, 
z = 3.33, p value 0.001) (Table 3). The estimated variance 
for individual ID random effect was 0.33 ± 0.57 (CI [0.29, 
1.12]) (Table 3).

Considering daily movements, caimans dis-
played greater mobility during nighttime, traveling 
81.4 ± 193.8  m, compared to 58.8 ± 163.1  m during day-
time (W = 46,500, p value = 0.019; Fig.  3). We estimated 

Fig. 2  Seasonal differences in the average distance (meters) 
from the closest forest fragment of captured adult female 
broad-snouted caimans (Caiman latirostris) between August 2013 
and June 2022 in Tapacurá Reservoir, São Lourenço da Mata, Brazil. 
White boxes: range between the first and third quartiles of the data; 
black whiskers: variability outside the upper and lower quartiles; 
horizontal black lines: data median; black dots: outliers; brown 
and green violins: data distribution

Table 1  Data of broad-snouted caimans (Caiman latirostris) tracked by GPS telemetry in the Tapacurá Reservoir, in São Lourenço da 
Mata, Pernambuco, Brazil, from July 2021 and July 2022

ID: Individual identification (‘F’ represents females and ‘M’ represents males); SVL: snout–vent length (centimeters); W: weight (grams); Reloc: number of valid 
relocations; HR: home range in km2 (95% utilization distribution); CA: core area in km2 (50% utilization distribution)

ID SVL W Reloc Date begin Date End Days HR CA

F1 83 18,240 30 7/20/2021 8/22/2021 33 0.001 0.0003

F2 75 13,040 23 7/14/2021 8/9/2021 26 – –

F3 77 16,300 38 7/14/2021 8/10/2021 27 0.50 0.03

F4 79 15,080 18 7/27/2021 8/14/2021 18 – –

F5 76 14,410 52 9/2/2021 10/28/2021 76 0.42 0.07

F6 82 15,120 275 9/2/2021 3/1/2022 180 0.88 0.13

F7 89 24,540 204 11/25/2021 3/15/2022 110 1.05 0.08

F8 74 14,060 13 11/24/2021 12/24/2021 30 – –

M1 75 – 57 7/16/2021 8/21/2021 36 0.32 0.09

M2 78 12,240 98 9/2/2021 11/18/2021 77 1.44 0.35

M3 78 14,530 135 9/2/2021 3/29/2022 208 0.92 0.31

M4 101 40,000 139 11/25/2021 7/4/2022 221 0.27 0.06
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HR and CA of nine individuals, excluding F2, F4, and F8 
from the analysis due to their limited number of valid 
relocations (Table  1). HR averaged 0.644 ± 0.431  km2 
(range: 0.001–1.444  km2) and CA averaged 
0.146 ± 0.121  km2 (range: 0.0003–0.346  km2) (Table  1, 
Fig.  4). The average overlap in HR among females was 
0.128 ± 0.184  km2 (range: 0–0.605  km2), nearly four 
times higher that of the males, whose overlap averaged 
0.028 ± 0.058 km2 (range: 0–0.158 km2). Female’s overlap 
in CA averaged 0.006 ± 0.019 km2 (range: 0–0.064  km2), 
the double that of the males, averaging 0.003 ± 0.005 km2 
(range: 0–0.01 km2).

Discussion
Our results revealed that movement patterns of broad-
snouted caimans varied between sexes, with males pre-
senting higher mobility during the wet season than 
females. Caimans moved more at night than during the 
day. Females increased their movement rates in rainy 
periods and remained close to the forest during the driest 
months, while males enhanced movements under higher 
water levels. However, these movements and habitat use 
were slightly affected by environmental factors (habitat 
features and abiotic variables) considered in our study. 
This may, in part, reflect their relatively small utilization 
areas. Our results offer a novel assessment of seasonal 
habitat selection by male and female broad-snouted cai-
mans, based on data collected systematically over a long 
time series and including telemetry-tracking informa-
tion, previously unavailable for Atlantic Forest popula-
tions of this species. We discuss our results in the light 
of possible factors associated with sexual differences in 
movement patterns and habitat use.

Female broad-snouted caimans generally were cap-
tured far from forest fragments during the wet season. 
Moreover, during rainy periods, they also exhibited a 
tendency to disperse over greater distances, when com-
pared to their movements during drier periods. Female 
crocodylians often remained near nesting sites during 
part of the year, when they engaged in activities related 
to nest construction, maintenance, and vigilance, or in 
parental care, which can be done alone or in associa-
tion with neighbor females [23, 68, 76]. Given that the 
breeding season of caimans coincides with the driest 

Table 2  Model selection results of covariates predicting broad-
snouted caimans (Caiman latirostris) movements (meters) in the 
Tapacurá Reservoir, São Lourenço da Mata, Pernambuco, Brazil, 
based on GPS-telemetry data between July 2021 and July 2022. 
Null, global and models with ΔAikake’s Information Criteria 
(ΔAICC) distance < 2 are presented

All covariates were scaled (mean = 0, standard error = 1)

Rv: reservoir volume (percentage); Rf: daily rainfall (millimeters); Sx: sex (female/
male); S: season (dry/wet). np: number of parameters; logLik: log likelihood of 
the model; AICc: Aikake’s Information Criteria; ΔAICC: distance from the best 
model; Weight: weight of each model in the models with ΔAICC < 2 (values from 
0 to 1)

Model np logLik AICc ΔAICC Weight

S + Sx + Rv:Sx + Rf:Sx + S*Sx 10 − 3265.09 6550.50 0.00 1.00

Global 12 − 3264.38 6553.30 2.73 0.00

Null 3 − 3285.06 6576.10 25.62 0.00

Table 3  Tweedie generalized linear mixed model (GLMM) averaged parameters of covariates predicting broad-snouted caimans 
(Caiman latirostris) movements (meters) in the Tapacurá Reservoir, São Lourenço da Mata, Pernambuco, Brazil between August 2013, 
and June 2022

Covariates were scaled (mean = 0, standard error = 1)

GLMM framework: Movement ~ Reservoir volume:Sex + Daily rainfall:Sex + Sex*Season. Male sex and wet season were used as reference categories to present 
modeling results

ID, individual identification; N obs., number of observations; N gr., Number of groups for random effects; Var., variance; SD, standard deviation; β, parameter estimate; 
SE, standard error; z, z-statistic value; p, statistical significance level; CI, confidence interval

*p value statistically significant (< 0.05)

Fixed effects β SE z p CI 2.5% CI 97.5%

Intercept 4.84 0.35 13.68  < 0.001 4.14 5.53

Reservoir volume:female 0.31 0.23 1.32 0.188 − 0.15 0.76

Reservoir volume:male 0.31 0.09 3.33 0.001* 0.13 0.50

Daily rainfall:female 0.42 0.15 2.81 0.005* 0.13 0.71

Daily rainfall:male − 0.09 0.08 − 1.14 0.255 − 0.23 0.06

Sex(male) − 0.69 0.47 − 1.46 0.145 − 1.61 0.24

Sex(male)*Season(wet) 1.36 0.49 2.78 0.005* 0.40 2.32

Random effects N gr N obs Var SD CI 2.5% CI 97.5%

ID 11 647 0.33 0.57 0.29 1.12
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period in Tapacurá, and that nests are built within for-
est fragments [3], it is expected that adult female move-
ment rates would be lower as they remain closer to the 
forest for nest attendance. Moreover, female caimans 
also had consistent body condition scores between sea-
sons, indicating that they likely do not undergo longer 
periods of starvation, even during nest attendance in 
the dry season. Notably, one female (F7) constructed 
her nest during our monitoring period, intermittently 
accessing the water while attending to the nest. We 
suspect that females in Tapacurá may return to the 
water to access food resources, regulate their body tem-
perature during warmer periods, or seek refuge from 
human disturbance [50].

None of the selected habitat features were associated 
with differences in males’ habitat use between dry and 
wet season, but movements slightly increased when res-
ervoir volume was higher. In general, dominant male 

crocodylians present territorial behavior [25, 29] by 
excluding subordinate males from mating, nesting sites, 
or access to food resources [58]. When water level is high, 
we presume that subordinate males may seek out habitats 
for mating or foraging, likely avoiding territories that are 
actively controlled by dominant males. However, in areas 
where species density is relatively low and habitat avail-
ability is more abundant, dominance hierarchy may not 
be observed on a large spatial scale [86]. In Tapacurá, cai-
man encounter rates (averaging 1.3 ind/km, [53]) is lower 
than observed in other congeneric caiman populations in 
Brazil, such as those observed in populations of Yacares 
(Caiman yacare) and spectacled caimans (Caiman croco-
dilus) [1, 21]. Since males did not show a preference for 
any specific habitat throughout the year and body condi-
tion scores did not significantly change between the dry 
and wet seasons, we anticipate that resources are avail-
able in most of reservoir’s habitats [53].

Fig. 3  Differences between the distance traveled (meters) by broad-snouted caimans (Caiman latirostris) tracked by GPS telemetry during (A) 
daytime and (B) nighttime in Tapacurá Reservoir, located in São Lourenço da Mata, Pernambuco, Brazil from 07/14/2021 and 07/04/2022. Plots 
C and D represent the median distance traveled across all individuals. White, blue and yellow boxes: range between the first and third quartiles 
of the data; black whiskers: variability outside the upper and lower quartiles; horizontal black lines: data median; black dots: outliers; yellow and blue 
violins: data distribution
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Overall, mobility did not differ between males and 
females, but male’s movements exceeded that of females 
during the wet season. A previous telemetry study involv-
ing broad-snouted caimans found that male movements 
outpaced those of females, as males may seek unpatrolled 
areas by other males [49]. Similar movement patterns 
have been documented in other crocodylian species [9, 
17, 31, 59]. The increase in male movement during the 
wet seasons corroborate with the positive association 
observed between movement and reservoir water levels. 
Moreover, our data suggest that broad-snouted caimans 
present sedentary behavior, with most monitored indi-
viduals exhibiting long-periods of limited movement. 
These findings align with existing studies that attribute 
this sedentarism to territorial behavior in males and nest-
ing-related care in females [25, 44, 47].

Adult caimans exhibit higher activity levels dur-
ing nighttime compared to daytime, aligning with their 
role as nocturnal predators [34]. Furthermore, croco-
dylians may move from areas protected by vegetation 
to open channels during nighttime to evade potential 
human threats like poaching or boat traffic, considering 
the reduced human activity during these hours [16, 43]. 
Despite this nocturnal behavior, temperature fluctua-
tions did not predict their movements in our study sys-
tem. Adult crocodylians may bask during warm daylight 
hours to elevate their metabolic rates [2, 18, 33, 35], and 
often increase their nocturnal movement activity for for-
aging or nest attendance [78, 59, 19, 20, 57]. However, the 
overall impact of temperature on their movement might 
be dependent on seasonal variations. During cold win-
ters, crocodylians may shift their activities to the daytime 
when temperatures better suit their metabolic processes, 

Fig. 4  Overall home range (HR) and core area activity (CA) of GPS-tracked broad-snouted caimans (Caiman latirostris) based on Brownian 
bridge movement models (BBMM) analysis (minimum 30 relocations) in Tapacurá Reservoir, São Lourenço da Mata, Pernambuco, Brazil, 
between 07/14/2021 and 07/04/2022. Females were represented by A F1, B F3, C F5, D F6, E F7 and males by F M1, G M2, H M3 and I M4
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whereas the opposite could be valid in hot summers [87]. 
Broad-snouted caimans often seek warmer habitats to 
keep their body temperature above 30 °C, increasing their 
metabolism functioning, growth and nutritional conver-
sion rates [6, 46]. Considering average annual tempera-
tures in Tapacurá is ca. 27 °C and often exceeds 30 °C, we 
assume that adult movements are minimally affected by 
local thermal changes [55].

Our evaluations of caiman home ranges (HR) and core 
areas (CA) were similar with previous records docu-
mented for broad-snouted caimans and other caiman 
species, ranging from < 0.001 to 1.98  km2 for HR and 
from < 0.001 and 0.42  km2 for CA [49, 47, 19, 71]. From 
all monitored individuals, male M4, the largest tracked 
specimen, had the lowest HR and CA estimated among 
males. Larger adults frequently display site-fidelity, 
patrolling their territories to protect resources and their 
access to females [4, 15, 59]. Consequently, smaller males 
must increase their movement and expand their areas of 
use to find unpatrolled territories to mate and forage [15]. 
Smaller males tracked in our study (M1, M2 and M3) 
generally occupied adjacent areas, with limited access 
to the forest areas in the north margin of the reservoir, 
which were primarily occupied by M4, and (Fig. 4).

Females exhibited a HR overlap four times  greater than 
that of males, particularly in the northern forested sec-
tor of the reservoir (Fig.  4). Typically, multiple females 
cohabit within a dominant male’s territory [34]. Addi-
tionally, females may move across different territories 
to enhance their chances of mating with multiple males, 
thereby improving offspring genetic diversity [31, 39, 61, 
77], and consequently increasing the spatial overlap with 
other females.

Conclusions
In Tapacurá, caiman’s movement patterns appear to 
be more influenced by the species’ behavioral ecology, 
such as male territoriality and dominance and female 
nesting and parental care, than by habitat structure or 
abiotic variables. Since some of these ecological factors 
remain relatively stable in the study area during our 
study, future research should investigate these move-
ment patterns in environments with significant varia-
tions in water flow (e.g., lotic systems) and seasonality 
(e.g., higher latitudes with greater temperature ranges). 
Additionally, future studies should account for indi-
vidual differences in movement patterns, rather than 
focusing solely on the population level and include 
quantification of resources availability (e.g., fish abun-
dance or primary productivity level) to predict their 
movements and habitat use.

Our study found that telemetry and capture methods 
complemented each other effectively, and future spa-
tial ecology studies may benefit from using these two 
methods in association. Despite the benefits of telem-
etry, significant advancements in hardware and trans-
mitter adjustments are needed to better suit caimans 
and study systems which are naturally obstructed by 
dense aquatic vegetation. In our study, all transmitters 
presented lifespans much shorter than expected, due 
to malfunction or detachment. Future studies should 
explore alternative technologies or attachment proce-
dures (e.g., subcutaneous or intracoelomic attachment 
of acoustic tags) and more durable batteries to enhance 
the longevity and reliability of telemetry data.
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