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Abstract 

Background Triaxial accelerometers have revolutionized wildlife research by providing an unprecedented under‑
standing of the behavior of free‑living animals. Machine learning is often applied to acceleration data to classify 
diverse animal behaviors across taxa. However, the high frequency, continuous data collection typically favored 
for behavioral classification studies often generates very large data sets, which may inhibit remote data acquisition 
and make data storage challenging. Coarse‑frequency sampling or non‑continuous bursts of acceleration data reduce 
these problems. To analyze such data, a suite of variables that summarize key features of the behavior of interest can 
be generated. These variables can then be used in numerous classification approaches, accommodating variation 
in data collection methods or sampling regimes. We demonstrate the potential for non‑continuous accelerometer 
data to identify long‑duration behavior and employ machine learning to classify the nesting behaviors of the critically 
endangered eastern Santa Cruz giant tortoise (Chelonoidis donfaustoi).

Results We field validated 112 nesting events from 21 giant tortoises. We then derived summary statistics based 
on accelerometry (e.g., overall dynamic body acceleration, metrics comparing acceleration before and after the prob‑
able event) and used them as inputs for Random Forest and Boosted Regression Tree classification algorithms. Our 
models produced a harmonic mean of precision and sensitivity (F1‑score) of 0.91. We tested the generality of our 
model and found that the model performs well when applied to both novel individuals and years. The most impor‑
tant variable in accurately classifying data sequences was the proportion of acceleration data bursts above an activity 
threshold followed by the average overall dynamic body acceleration value of the bursts.

Conclusions These results demonstrate the feasibility and efficacy of using non‑continuous accelerometer data 
to identify prolonged, biologically relevant behaviors in free‑living wildlife. By using summary variables that do not 
require continuous sampling, this approach facilitates long‑term monitoring of animal behavior. Similar methodology 
has potential to inform priority questions in ecology and conservation, such as predicting wildlife responses to cli‑
mate change and identifying critical habitats, with applications across diverse species and behaviors.
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Background
The recent integration of GPS tracking devices with 
complementary sensors has advanced wildlife research, 
offering unprecedented insights into animal behavior 
and physiology [1, 2]. Triaxial accelerometers (accel-
erometers) are particularly useful in addressing ques-
tions beyond what can be gleaned from an animal’s 
two-dimensional trajectory [1]. By detecting changes in 
gravitational or inertial acceleration in three dimensions, 
accelerometers provide detailed information about the 
dynamic movement of an animal. These data present 
opportunities to explore how animals allocate energy 
resources [3] and how they navigate and respond to their 
environment in ways previously inaccessible through tra-
ditional methods of studying wildlife [4, 5].

Advances in analytical methods such as Machine 
Learning (ML) have further advanced the utility of accel-
erometry data by allowing classification of animal behav-
iors [1, 6]. Effective animal behavior classification models 
often include supervised learning techniques [7] and have 
exhibited a wide range of complexities, from simpler 
algorithms such as K-Nearest Neighbor [8] to ensem-
ble methods (e.g., Random Forest and Gradient Boosted 
Models [9]) to more complex deep learning methods [4, 
10]. The application of ML techniques to accelerometry 
data interpretation has facilitated the identification of 
behaviors of free-living animals across a variety of activi-
ties and taxa, such as the flight characteristics of birds 
[11], foraging in mammals [12, 13], and spawning in fish 
[14].

Most accelerometry-based animal behavioral classifi-
cation studies have prioritized high-frequency data col-
lection, often obtaining a near-continuous data stream 
[15–18]. The assumption behind obtaining these fine-
scale data to train classification models is that they will 
increase model accuracy [19], however high sampling 
frequencies often generate enormous data sets. This 
can present challenges in data storage on animal-borne 
devices, particularly when monitoring behavior over 
prolonged periods. Further, the logistical or budget con-
straints inherent in wildlife research often preclude such 
extensive data collection, particularly due to the costs 
associated with retrieving the data regularly or transmit-
ting large volumes of data through satellite connections.

Alternatively, acceleration data can be collected at 
lower resolutions to alleviate some of the data storage 
and transmission issues associated with high sampling 
frequencies. Low-resolution accelerometry sampling can 
take two forms: data can be collected continuously, but 
at a decreased sampling frequency (henceforth “coarse 
resolution sampling”) or collected in higher resolution 
bursts with gaps between each burst (henceforth, “burst 
sampling”). Both sampling regimes have been used to 

successfully classify animal behavior. Data are often ref-
erenced as coarse resolution when they are collected at 
a rate of one sample per second (1Hz) or less (e.g., [19]), 
and such sampling rates have been used to classify behav-
iors or activity in animals such as snowshoe hares [20], 
squirrels [21], freshwater turtles [22], and sharks [23]. 
Burst sampling is generally less common than continuous 
collection in behavioral identification studies [1]. Never-
theless, non-continuous data have proven useful in appli-
cations such as identifying flight modes in a gull species 
[24], determining activity patterns of bonefish [25], tying 
changes in hare behavior to landscape use [26], and 
understanding variation and energetic costs in migrat-
ing birds [27, 28]. However, there are inherent challenges 
with reducing the frequency at which data are collected 
or introducing gaps into the data stream, and such deci-
sions can potentially affect what behaviors can be identi-
fied and the types of questions that the data can be used 
to answer.

Decisions regarding appropriate acceleration data sam-
pling regimes should consider the duration of the activ-
ity of interest [29] in addition to logistical constraints of 
data collection. To adequately identify a specific motion 
from acceleration data, it is generally recommended that 
data are collected at a frequency at least twice that of 
the duration of the activity itself [30]. While sub-second 
sampling frequencies (> 1 Hz) may be required to cap-
ture behaviors that happen briefly or sporadically, such 
as changes in body posture (e.g., [31]), not all biologically 
significant behaviors occur on such short timescales. On 
a broader scale, accelerometers can be used to examine 
diel activity patterns, revealing temporal dynamics of 
energy expenditure across various habitats and contexts 
[23, 32, 33]. Further, individual movements of an animal 
often aggregate into larger, more complex events, which 
may be challenging to discern if only discrete movements 
are identified. For example, lekking behavior typically 
involves a series of multiple movements such as motor 
patterns, vocalizations, and physical interactions, which 
can span hours [34–36]. This activity may be repeated 
daily and may persist over multiple months during the 
mating season [36, 37]. Instead of classifying each move-
ment with a continuous data stream, there is potential to 
identify the characteristics of acceleration data specific to 
prolonged behaviors at the event level.

Integrating non-continuous acceleration data into a 
typical classification approach remains challenging. Sum-
mary statistics derived from burst-sampled data offer 
promise for understanding behaviors of interest. For 
example, Overall Dynamic Body Acceleration (ODBA; 
[38]) is a metric commonly used to quantify the activity 
level of an organism. ODBA is calculated by summing the 
absolute values of acceleration changes across the three 
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axes that accelerometers detect over a temporal window. 
This involves measuring the acceleration in each of the 
three axes (X, Y, and Z), taking the absolute value of the 
changes in each axis to consider only the magnitude of 
the movements, and then summing these values together. 
By doing this over a specified period, ODBA provides a 
single value that represents the overall activity level dur-
ing that time. More refined variables could include the 
periodicity of a signal or differential effects of a move-
ment across different axes (e.g., [39]). By synthesizing key 
features from raw data, derived variables may provide 
an efficient summary of an extended period of interest, 
which may then be used as inputs for ML algorithms. 
Furthermore, this approach of summarizing the raw data 
enables the integration of data from different sampling 
regimes and may accommodate variation in how acceler-
ometers are mounted or calibrated.

Prolonged activities of high biological importance and 
conservation value include those related to reproduction, 
such as mating, nest construction, or parturition. When 
and where animals choose to undertake these activities 
can have critical consequences for the reproductive suc-
cess of individuals and demographics of populations [40]. 
Nest site selection is particularly critical for oviparous 
species that do not incubate eggs and for which environ-
mental conditions alone determine egg and hatchling 
survival [41, 42]. The cryptic nesting habits and often 
remote habitats of chelonians (turtles) can make gather-
ing reproductive data difficult and costly, especially for 
long-term or individual-based studies. For instance, a 
long-term study monitoring population trends of hawks-
bill sea turtles (Eretmochelys imbricata) included over 
20,000 h of patrolling a single beach to identify nest-
ing activities and nest locations [43]. A flexible tool for 
identification of nesting activity and location of nest sites 
would be invaluable for conservation efforts of popula-
tions that require special management (e.g., nest protec-
tion or egg collection) and monitoring or those that are 
challenging to observe for extended periods.

Galapagos giant tortoises (Chelonoidis spp.) exemplify 
these issues. Of 12 extant species, four occur on islands 
uninhabited by humans [44, 45], and all species nest in 
remote, rugged, and inaccessible areas [46]. Furthermore, 
the nesting period is relatively long, generally lasting 
from June through December, with females depositing up 
to five clutches in a single season [46]. Galapagos tortoise 
populations are still recovering from the negative impacts 
from previous centuries of over-exploitation by humans 
[47] and are currently threatened by invasive species, 
land use and climate change, pollution, and disease 
[48–53]. Recent research has broadly identified the criti-
cal role of the timing of nesting and nest site selection 
in recruitment success [41]. However, the evolutionary 

ecology and conservation implications of interactions 
between nesting and environmental conditions under cli-
mate change are poorly known. Using remote monitor-
ing tools to determine the timing and location of nesting 
of Galapagos tortoises could offer critical insights into 
their reproductive behaviors and support conservation 
efforts such as locating nests for physical protection from 
threats, including feral pigs [48]. Additionally, the nesting 
activity of Galapagos giant tortoises provides an excellent 
case study in identifying prolonged behavior from accel-
erometer data, as successful nesting attempts can last as 
long as 8–12 h [54, 55].

We obtained accelerometry data collected by data log-
gers mounted on the carapaces of Galapagos giant tor-
toises, from which we identified tortoise nesting behavior. 
From the sequences of tortoise activity, we derived sum-
mary variables, which served as inputs for ensemble 
machine learning methods to accurately predict tortoise 
nesting activity. This approach can overcome the logisti-
cal challenges associated with direct observation, but also 
lends support to the applicability of similar methodolo-
gies to other species and behaviors.

Methods
Study area and tortoise movement tracking
The Galapagos Archipelago is a group of volcanic islands 
located approximately 1000 km west of continental Ecua-
dor, straddling the equator [56]. Across the archipelago, a 
hot-wet season is typically observed from January to May, 
followed by a cool-dry season from June to December 
[57]. Santa Cruz (986  km2) is a centrally located, human-
populated island which rises to an elevation of 860 m 
[58]. The island’s elevational gradient consists of arid low-
lands and cooler, wetter upland areas, where much of the 
land has been converted to agriculture [59]. Santa Cruz 
hosts two distinct populations of giant tortoise, Chelo-
noidis porteri in the west and C. donfaustoi in the east, 
commonly referred to as the western and eastern Santa 
Cruz giant tortoise, respectively [60]. While both popula-
tions are of management concern, C. donfaustoi is listed 
as Critically Endangered on the IUCN Red List with a 
population estimated to consist of less than 600 individu-
als [61, 62].

Between August 2019 and September 2022, as part 
of the Galapagos Tortoise Movement Ecology Program 
[63], 21 custom-built GPS/accelerometer trackers (e-obs 
GmbH, Munich, Germany) were deployed on free-living 
adult female C. donfaustoi tortoises in and around the 
most intensely used known nesting zone of this popu-
lation [64, 65]. Figure  1b depicts a free-roaming tor-
toise nesting within this intensely used nesting zone. To 
increase sample size, from July to September 2022, we 
also collected data from two captive C. niger x C. becki 
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hybrid individuals maintained at the Fausto Llerena 
Breeding Center in the town of Puerto Ayora on Santa 
Cruz Island. Devices were affixed to the front of the cara-
pace using nontoxic plumber’s epoxy (Fix-It Stick Epoxy 
Putty, Oatey, Cleveland, OH, USA). The trackers logged 
a GPS coordinate once every hour with an accuracy of 
approximately 10 m. The data loggers also housed a tri-
axis accelerometer, which was programmed to record 
bursts of acceleration data at one of two sampling sched-
ules: a 5.4-s, 10-Hz burst of data every 5 min, or a 2.0-s, 
20-Hz burst every 10 min.

Nesting training data collection
During the 2022 and 2023 nesting seasons, the accel-
eration and movement data of tracked tortoises were 
remotely downloaded to a hand-held base station 
approximately once per week from late June through 

early December. Data can be downloaded to the base 
station at distances up to 2 km if unobstructed, however 
rugged terrain in the field generally restricts downloads 
to occur within several hundred meters or less.

Gravidity assessments
Radiography has been used successfully to assess fecun-
dity in other free-living chelonians [66–69]. Approxi-
mately once every 3  weeks throughout the duration of 
the nesting season, females were located using the VHF 
or UHF radio frequency emitted from the data logger. 
Upon location, each tortoise was radiographed using 
a portable X-ray generator (MinXRay, Northbrook, 
IL) to identify the presence of oviductal eggs (Fig.  1a). 
This schedule minimized radiation exposure to the tor-
toises while ensuring that a clutch would not be missed 
between radiography events. For female tortoises laying 

Fig. 1 a A typical radiograph of a gravid female C. donfaustoi carrying six calcified eggs in the right caudal quadrant of the coelomic cavity. b 
An unmarked female C. donfaustoi observed constructing a nest near the study site. c Researcher Freddy Cabrera identifying the cap of a potential 
nest site by examining variation in soil consistency and the presence of integrated fecal material. d A validated nest site marked by a loose ring 
of stones
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multiple clutches, interclutch intervals ranged from 27 
to 69 days, with an average of 38.9 days (E.B. Donovan, 
unpublished data).

Identification of nesting events
Possible windows of nesting activity for each female 
were identified by comparing sequential radiographs. 
For example, if the first radiograph of a particular female 
showed a clutch of fully shelled eggs, and the subse-
quent radiograph showed no eggs or only follicles, then 
the female nested between imaging dates. We then visu-
ally examined the acceleration data for possible nesting 
events based on overall activity from the accelerometer 
and GPS relocations. We identified nights with possible 

nesting activity by looking for persistent nocturnal activ-
ity (i.e., a large proportion of accelerometer bursts with 
variable raw values, Fig.  2) and minimal movement in 
geographical space according to GPS relocations. For 
possible nest locations, we averaged latitudes and longi-
tudes of the points associated with increased accelerome-
ter activity. To exclude activity associated with movement 
to and from the nesting site, a nesting event was con-
sidered to have begun when sequential points were less 
than 10 m apart and ended when subsequent points were 
greater than 10 m apart.

Points identified as potential nesting locations were 
then validated in the field by navigating to each estimated 
nest location and searching within a 5-m buffer. Nests 

Fig. 2 Graphical representation of one axis of accelerometer data from a data logger attached to a female Galapagos giant tortoise over three 
consecutive nights. Bursts of acceleration are 5.4 s in length every 5 min from 16:00 to 00:00 and are plotted sequentially across the X‑axis. 
The Partial Dynamic Body Acceleration corrected for the number of recorded values (cPDBA) of each burst is represented by purple points 
with values referencing the Y‑axis. The threshold cPDBA value determined to separate active from inactive bursts is represented by the horizontal 
blue line at 0.584. This sample of graphical data includes a confirmed nesting event (panel B), along with the evenings preceding (panel A) 
and following (panel C) the event
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were identified by the presence of a nest cap, a compac-
tion of soil above the egg chamber which the female cre-
ates by mixing the substrate with urine and feces [46]. At 
each site, the cap was first identified visually, then con-
firmed by tapping the ground with a machete handle to 
listen for differences in soil density (Fig. 1c). Confirmed 
nest sites were marked with a loose ring of stones and a 
wooden identification marker (Fig.  1d). All nests were 
opened upon first detection, around the time when incu-
bation was estimated to be complete, or both to verify 
clutch size [41]. We also compared the number of eggs 
present and, if applicable, any abnormalities of eggs (i.e., 
eggs of atypical shapes or sizes, conjoined eggs) in the 
nest to the eggs observed in radiograph images to con-
firm the maternal identity of a clutch.

Algorithm development
We trialed nesting event detection algorithms using 
Random Forest [70] and Boosted Regression Tree [71] 
classifiers. Random Forest (RF) is a machine learn-
ing technique which utilizes multiple decision trees. 
RF allows the model to generalize by first bootstrap-
ping the dataset and then building a decision tree for 
each bootstrapped dataset using a subset of randomly 
selected variables. Boosted Regression Trees (BRT) is 
another ensemble learning method that combines mul-
tiple weak learners, typically decision trees, to create a 
strong learner. While RFs build multiple decision trees 
independently and combine their predictions through 
averaging or voting, BRTs train trees sequentially, with 
each new tree focusing on the instances that the previ-
ous ones misclassified. This iterative process adjusts the 
model’s emphasis on misclassified data points, gradually 
improving overall performance. However, boosting tends 
to be more sensitive to outliers and can potentially over-
fit the training data. RFs are more commonly applied to 
classification of animal behavior from accelerometer data 
([72–74] but see [9]).

Summary variable derivation
Historical observation in the field has shown that female 
Galapagos tortoises typically begin nesting approximately 
2 h before sunset (sunset is between 17:45 and 18:05 dur-
ing the nesting season) and persist into nighttime hours, 
with events lasting as long as 8 to 12 h in total [54, 55]. 
Based on the estimated start and end times of confirmed 
nesting events in the field, our empirical data generally 
support these figures (E. Donovan, unpublished data). 
We calculated the summary statistics for six time periods 
each day (15:00–21:00, 16:00–21:00, 16:00–22:00, 16:00–
23:00, 16:00–0:00, and 16:00–1:00) and compared RF 
and BRT outputs to determine which yielded the most 

accurate model. Herein, a given night of tortoise activity 
being analyzed is referred to as a “period of interest”.

We developed a suite of features to be used as predictor 
variables based on a priori assumptions of their relevance 
and predictive power for the machine learning model. 
These metrics were primarily based on the assumption 
that dynamic acceleration would be increased for more 
prolonged periods when a tortoise was engaged in nest-
ing activity and that overall tortoise activity prior to nest-
ing would vary from activity after a successful nesting 
event [75–78]. A complete list of the 11 features used 
as predictor variables and a description of each is found 
in Table 1. All of these summary statistics are based on 
Overall Dynamic Body Acceleration (ODBA, see [38]), 
which is the sum of the absolute values of the dynamic 
movements across all three axes (X, Y, and Z). Because of 
the variation in frequencies at which data were collected 
(see above; section Study area and tortoise movement 
tracking), we corrected ODBA by dividing this metric 
by the total number of raw accelerometer values col-
lected over the period of interest (cODBA, Supp Equa-
tion SE1). To determine whether axes are differentially 
affected by digging activity, we included Partial Dynamic 
Body Acceleration for each axis (cPDBA_x, cPDBA_y, 
cPDBA_z, Supp Equation SE2), which were also cor-
rected for the number of accelerometer values included 
in the period of interest.

To provide a measure of consistency of activity 
throughout the period, we determined the cODBA for 
each acceleration data burst (Supp Equation SE3.1). We 
then classified the burst as being associated with activ-
ity or inactivity through a gaussian-mixture model using 
Package mclust in R [79]. Mixture-models are a method 
used to identify natural groupings (clusters) within data. 
We determined a threshold value over which the burst 
was considered active by calculating the point where 
the probability of belonging to one of the two Gaussian-
distributed clusters becomes equal to or switches from 
one to the other, using their means and variances. A his-
togram showing the distribution of burst-wise cODBA 
values and the threshold can be found in Supp Fig.  1. 
We then calculated the proportion of bursts within the 
period of interest that were active (active_prop, Supp 
Equation SE5).

Digging activity may not always lead to the successful 
completion of a nest. A female may abandon attempts to 
excavate a nest, either because of site unsuitability (e.g., 
she encounters too many rocks) or because of an exter-
nal disturbance [54, 80]. We therefore included metrics 
which compared the cODBA of the period of interest to 
the cODBA for periods before and after with the inten-
tion of reducing the likelihood that the algorithm will 
erroneously identify an abandoned nesting attempt. 
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These metrics included whether the period of interest 
exhibited the greatest cODBA among the 7 days before 
and 7 days after (greatest_ODBA) and whether it exhib-
ited the greatest cODBA only in the 7 days after (great-
est_ODBA_aft). We also compared the averages of the 
cODBA values for these time periods (ODBA_ratio). 
Finally, we included the average cODBA value over 
the 7 days after the period of interest (avg_ODBA_aft). 
Because the interclutch interval in our study was a mini-
mum of 27 days (average 38.9 days), accelerometry data 
from periods of 7 days prior to or following periods of 
interest served as a non-nesting data baseline against 
which to compare accelerometry data.

Model training and evaluation
We used the program R (version 4.2.3, R Core Team [81]) 
to extract the predictor variables from the acceleration 
data and to run the models. RF models were constructed 
using package ‘randomForest’ [82] with 500 trees, and 
BRT models were built in in package ‘gbm’ [83] with 500 
trees and a learning rate of 0.1. We extracted all predic-
tor variables for each nesting event validated in the field 
and gave them a value of 1 for the classification category. 
To train the model, we extracted the same variables 14 
nights before and 14 nights after the successful nest-
ing event and gave those events a value of 0. We chose 
to draw the training data from the 28-day period sur-
rounding each nesting event because, given the 27-day 
minimum interclutch interval, the period is unlikely to 
include a second nesting event for a given female. This 

also ensured that tortoise activity both leading up to and 
following a nesting event were included as training data.

Four confirmed nests (one laid in 2022 and three laid 
in 2023) were excluded from the training data, as the 
female nested outside of the period of interest, finishing 
nest construction prior to the start of all time windows 
considered for the model. An additional four presumed 
nesting events (three laid in 2022 and one laid in 2023) 
were excluded from the training data sets because the 
presence of a nest was not validated in the field. All eight 
instances were retained as potential validation data.

We tested three different methods for separating train-
ing and validation data sets: temporally [84], by indi-
vidual [85], and randomly [86]. For temporal validation, 
we used one year of data to train the model and reserved 
the other year for validation. Since we had two years of 
nest data, this method involved two iterations—one for 
each year. In the training data set for a given year, we 
retained only the confirmed nesting events and the 14 
days before and after each event. For the validation data 
set, we kept all data from the nesting season (June 1 to 
December 31) of that year, without the same restriction 
to nesting events. For individual validation, we randomly 
selected 70% of individuals to train the model and used 
the remaining 30% for validation. The training data set 
for individual validation only included the nesting events 
and the associated 14 days before and after. The valida-
tion data set contained all available data from the nesting 
season for the remaining individuals. To form the data set 
for random validation, we randomly selected 70% of all 
nesting events, along with their corresponding 14 days 

Table 1 Feature variables used to predict tortoise nesting activity

Feature variables that were extracted from the acceleration data to predict tortoise nesting activity through Random Forest and Boosted Regression Tree machine 
learning methods. Relevant equations are referenced in the “Equations” column and can be found in the supplementary materials

Variable Description Equations

cODBA Overall dynamic body acceleration (ODBA) of a given night of tortoise activity (“period of interest”), corrected 
for the number of values recorded

SE1

cPDBA_x Partial dynamic body acceleration (PDBA) of the period interest on the x‑axis only, corrected for the number of val‑
ues recorded

SE2

cPDBA_y Partial dynamic body acceleration (PDBA) of the period interest on the y‑axis only, corrected for the number of val‑
ues recorded

SE2

cPDBA_z Partial dynamic body acceleration (PDBA) of the period interest on the z‑axis only, corrected for the number of val‑
ues recorded

SE2

burst_avg Average cODBA for each burst of accelerometer activity within the period of interest SE3.1, SE3.2

burst_sd Standard deviation of ODBA of accelerometer activity bursts SE3.1, SE4

active_prop Proportion of accelerometer bursts where cODBA exceeds a threshold value and are classified as active SE3.1, SE5

greatest_ODBA Binary variable indicating whether the cODBA of the period of interest is the greatest when compared to 7 nights 
prior and 7 nights after

greatest_ODBA_aft Binary variable indicating whether the cODBA of the period of interest is the greatest when compared to 7 nights 
after

avg_ODBA_aft Average cODBA of the 7 nights following the period of interest

ODBA_ratio Ratio of average cODBA 7 nights prior to the evening of interest to the average cODBA 7 nights after
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before and after. All remaining dates from the nesting 
season in the overall data set that were not used for train-
ing were assigned to the validation set. Since individual 
tortoises often nested more than once, nesting events 
from the same tortoise could appear in both the training 
and validation sets. Individual and random validations 
were run with five iterations each.

To determine the best model, we calculated three 
metrics:

1.  Precision, or the proportion of true positive pre-
dictions among all positive predictions made by the 
model:

2. Sensitivity, also known as recall or true positive rate, 
measures the ability of a model to correctly identify 
positive instances out of all actual positive instances 
in the dataset:

3.  F1-score, which is the harmonic mean of precision 
and sensitivity, was used as a measure for best overall 
performance. The F1-score ranges from 0 to 1, with 
values closer to 1 being more predictive (i.e., better 
model fit):

Using the average F1-score across validation methods, 
we determined which algorithm (RF or BRF) and time 
window were overall the most successful in classifying 
nesting events. For that model, we assessed the impor-
tance of predictor variables using the mean decrease in 
Gini impurity index (“Mean Decrease Gini”) across all 
decision trees in the ensemble. The Gini impurity index 
measures how often a randomly chosen element would 
be incorrectly classified based on the distribution of 
labels in the data subset used for training [87]. For BRT 
models, we used a similar metric which is referred to as 
Variable Importance [71].

For the top-performing model, we examined misclas-
sified events and identified commonalities among them. 
To assist with assigning potential reasons for misclas-
sification by the algorithm, we examined the estimated 
start and end times of the event, as well as the variables 
that were used as predictors in the model. Ultimately, we 
identified seven categories. For data misclassified as a 
result of Type I errors (false positives, non-nesting event 

Precision =
True positives

True positives+ False positives
.

Sensitivity =
True positives

True positives+ False negatives
.

F1 =
2× Precision× sensitivity

Precision+ sensitivity
.

identified as nesting by the model), the categories were 
“abandoned nesting attempt” and “undetected at time of 
sampling.” For Type II errors, we identified three catego-
ries that were related to the timing of nesting: the event 
began after the start of the period of interest, the event 
concluded early in the period of interest, or the event 
occurred entirely outside of the period of interest. The 
two remaining categories for Type II errors were “unable 
to locate” (in which the event was identified as nesting 
based on radiographs and manual review of the accelera-
tion data but was not subsequently validated in the field) 
and “unknown”. We presented the frequency of Type I 
and Type II errors in a confusion table.

Results
Using a combination of radiographs and tri-axis acceler-
ometer data, we identified a potential 116 unique nesting 
events across two field seasons (n = 53 in 2022, n = 63 in 
2023), where 112 resulted in a validated nest site. Vali-
dation of the nest occurred an average of 14 days after it 
was laid (median = 10 days, range = 1–63 days). Among 
the 112 validated nests, 109 were laid by free-living C. 
donfaustoi tortoises and three were laid by tortoises in 
human care at the Fausto Llerena Breeding Center. Of the 
21 free-living female tortoises that were actively tracked, 
19 produced one or more nests that were validated in 
the field during the two-year study period. The remain-
ing two free-living tortoises were either absent from the 
nesting zone entirely or did not produce a clutch of eggs 
while present.

The F1-score (harmonic mean of precision and sensi-
tivity) for all classification algorithms was between 0.70 
and 0.91 when averaged across iterations (Table  2). The 
temporal window that performed best varied by valida-
tion method, where the best period was 16:00–01:00 for 
temporal validation, 16:00–23:00 for individual valida-
tion, and 16:00–00:00 for random validation (Table  2). 
Notably, the performance across these three time win-
dows (16:00–11:00, 16:00–00:00, and 16:00–01:00) exhib-
its considerable overlap when considering all model 
iterations. This overlap suggests that the observed dif-
ferences between these time windows may be marginal. 
As such, the observed differences between these three 
time windows may arise in part from random variability. 
When the F1-scores were combined across all validation 
methods, the RF model from 16:00 to 23:00 was the best 
model overall. RF models systematically outperformed 
BRT models when trained and tested on the same data 
set (Table  2), but the two model types differed little in 
their sensitivities (Additional file  1: Table  S1). Both RF 
and BRT models generally had a higher precision than 
sensitivity. On average, 93% of the events classified as 
nesting events were indeed nesting events (precision) 
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and 84% of all nesting events were properly identified by 
the model (sensitivity) (Additional file 1: Supp Table 1).

Of the summary variables that were extracted from the 
acceleration data to predict tortoise nesting activity, the 
proportion of acceleration data bursts above the activity 
threshold (active_prop) was consistently and substan-
tially the most important (Fig.  3). The average ODBA 
value of the bursts (burst_avg) was the second most 
important, followed by the average ODBA for evenings 
after the event (avg_ODBA_aft). The corrected ODBA 
value (cODBA) for the night of interest was the fourth 
most important, and cODBA_y was the most impor-
tant single-axis partial dynamic body acceleration met-
ric over cODBA_x and cODBA_z. Comparative ODBA 
metrics were marginally important (ODBA_ratio, great-
est_ODBA and greatest_ODBA_aft).

For the best model (16:00–00:00), we identified the 
events which were misclassified across all three valida-
tion methods we tested (both iterations of temporal vali-
dation and five iterations each for individual and random 
validation). For each validation method, models gener-
ated more Type II errors (nesting events classified as non-
nesting events) than Type I errors (non-nesting events 
erroneously classified as nesting events) (Table 3). There 
were 26 events that were misclassified (19 Type II errors, 
7 Type I errors, Fig. 3); 58% of the Type I misclassification 
instances came from two discrete events that were out-
side of the period in which radiographs were conducted 
in 2022. The remaining Type I errors were attributed to 
nesting abandoned attempts by females leading up to a 
successful event. In two of the five misclassifications, the 

time that elapsed between the misclassified attempt and 
the successful event was 14 days, which is outside of the 
windows used to identify training data for each nesting 
event. Among the Type II errors, ten events were likely 
misclassified due to the event occurring at an atypical 
time of day. Most frequently, these events ended rela-
tively early in the time window, between 17:00 and 19:00. 
Other events were misclassified because they occurred 
entirely outside of the period of interest, generally in the 
morning hours. A single event began late in the period.

Discussion
We derived a suite of summary variables from non-con-
tinuous accelerometer data and used a machine learning 
framework to reliably identify nesting activity in Galapa-
gos giant tortoises. Despite being derived from acceler-
ometer data collected using a burst sampling regime, the 
summary statistics we used as inputs for the Random 
Forest (RF) and Boosted Regression Tree (BRT) models 
produced high precision and sensitivity in distinguishing 
nesting from non-nesting behavior. The high F1-scores 
and adequate temporal and individual cross-validation 
performance of our models suggest that this could be a 
valuable method for classifying long-duration behaviors 
from coarse or non-continuous acceleration data.

We found that RF algorithms generally outperformed 
BRT in our application (Table 1). One possible explana-
tion for this is that RF models are less prone to overfit-
ting, especially when dealing with noisy data [88]. Given 
an increase in the size of the training data set, the perfor-
mance of the two methods we employed here may begin 

Table 2 Classifier output comparison for the tortoise nest detection algorithm

Boosted Regression Tree (BRT) and Random Forest (RF) classifier output comparison for the tortoise nest detection algorithm from triaxial accelerometer data. 
Training data include 112 confirmed nesting events by 21 female Galapagos giant tortoises. We report the F-1 scores (harmonic mean of Precision and Sensitivity) for 
data summarized over six biologically relevant time periods and three validation methods: withholding a year of data (“Temporal”), withholding data from random 
individuals (“Individual”), and withholding a random subset of data (“Random”). The value reported is the average across iterations with the range in brackets. The 
highest performing model for each validation method is shown in bold

Time period Algorithm F-1 Score Overall average

Temporal Individual Random

15:00–21:00 BRT 0.78 (0.77–0.78) 0.83 (0.78–0.87) 0.70 (0.55–0.78) 0.770

RF 0.84 (0.79–0.88) 0.85 (0.81–0.89) 0.75 (0.65–0.79) 0.813

16:00–21:00 BRT 0.85 (0.81–0.89) 0.84 (0.81–0.86) 0.73 (0.67–0.82) 0.810

RF 0.87 (0.80–0.94) 0.90 (0.84–0.94) 0.78 (0.74–0.83) 0.837

16:00–22:00 BRT 0.86 (0.84–0.87) 0.88 (0.84–0.93) 0.78 (0.75–0.82) 0.827

RF 0.86 (0.81–0.91) 0.90 (0.88–0.93) 0.82 (0.78–0.86) 0.860

16:00–23:00 BRT 0.88 (0.87–0.88) 0.88 (0.81–0.94) 0.77 (0.72–0.83) 0.843

RF 0.89 (0.86–0.91) 0.91 (0.85–0.95) 0.81 (0.77–0.86) 0.867

16:00–00:00 BRT 0.89 (0.88–0.89) 0.90 (0.85–0.93) 0.81 (0.78–0.86) 0.860

RF 0.89 (0.88–0.91) 0.90 (0.86–0.93) 0.85 (0.79–0.90) 0.883
16:00–01:00 BRT 0.89 (0.88–0.91) 0.85 (0.75–0.89) 0.82 (0.79–0.86) 0.870

RF 0.90 (0.88–0.93) 0.86 (0.83–0.90) 0.84 (0.81–0.86) 0.880
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to converge, and the best technique is likely to vary based 
on the details of a data set and the type of behavior being 
classified. While deep learning neural networks can also 
be powerful and popular classification tools, the relatively 
small number of nesting events we obtained to train the 
model influenced the decision not to consider these 
approaches. Moreover, deep learning generally requires 
increased computational capacity, yet simpler ensemble 
ML methods often produce similar or better classifica-
tion in animal behavior in studies where both techniques 
are included for comparison [4, 89, 90]. On the oppo-
site end of the model complexity spectrum, simpler 
approaches such as k-means clustering [8, 91] or using 
thresholds based on metrics including ODBA [20, 92] 

have been successfully applied in other studies to distin-
guish between behaviors. However, we found that multi-
ple metrics (e.g., active_prop, avg_ODBA_aft; Fig. 3) were 
important in distinguishing nesting from non-nesting 
sequences. This was perhaps especially important in dis-
tinguishing abandoned nesting attempts from successful 
events. Thus, relying on a single threshold-based variable 
would likely be insufficient. Nevertheless, we recommend 
that researchers assess multiple approaches or algorithms 
to determine which yields optimal performance for a spe-
cific case [4, 9].

The top-performing model identified the proportion 
of active acceleration bursts (active_prop) during the 
period of interest as the most important predictor of 

Fig. 3 Variable importance of the top‑performing Random Forest model in classifying nesting activity of 21 Galapagos giant tortoises 
from triaxial acceleration. Values are reported as Mean Decrease Gini, a measure of the importance of each variable in predicting classifications 
across the ensemble of trees. Variables of a higher decrease Gini value indicate the variable made a greater contribution to model fit. Averages 
across iterations are shown with horizontal bars indicating the range. Validation methods include withholding a year (“Temporal”), random 
individuals (“Individual”), and a random subset of data (“Random”). Refer to Table 1 for detailed covariate descriptions

Table 3 Confusion matrix for the top‑performing tortoise nest detection algorithm

Confusion matrix for the top-performing Random Forest model in classifying giant tortoise nesting activity from triaxial acceleration data using three validation 
strategies. Strategies include withholding a year (“Temporal”), random individuals (“Individual”), and a random subset of data (“Random”). Reported values represent 
averages across iterations. Values of 0 indicate non-nesting activity and values of 1 indicate nesting events

Temporal Individual Random

Predicted 0 1 0 1 0 1

Actual 0 3536 3 2495 2 4704 4

1 9 49 6 36 7 32
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tortoise nesting (Fig.  4). Galapagos tortoises are gener-
ally assumed to be largely inactive at night (and therefore 
inactive during typical nesting hours [63]). Although we 
initially assumed that a metric like cODBA would effec-
tively capture the increased movement rate associated 
with nesting and readily identify a nesting event, early 
testing revealed that increased movement alone was 
insufficient. This may be because a mean-based metric 
like ODBA can be misleading, as it does not distinguish 
between persistent, small movements and occasional 
large movements. The proportion of active bursts was 
therefore crucial in identifying the type of prolonged, 
continuous activity associated with nesting and distin-
guishing it from short-term, high-intensity movement 
that a tortoise might also be doing during that time. We 
are uncertain about the nature of these short-term, high-
intensity movements, as we did not validate other behav-
iors in the current study. However, these signatures in the 
accelerometry data could include movement over rugged 
terrain in the last hours of the day that overlap with the 
beginning of the temporal window we used.

Not only are there energetic costs to nesting [75], but 
there are also physiological constraints regarding the 
time to subsequently produce a new clutch of eggs. This 
can lead to marked variations in activity patterns before, 
during, and after oviposition [76]. Increased nocturnal 
behavior preceding oviposition, but not after, has been 
documented in ornate box turtles (Terrapene ornata; 
[77]). Indeed, we observed increased nocturnal activ-
ity in the nights preceding nesting in our study based on 
both GPS and acceleration data, but tortoises resumed 

nocturnal inactivity following nesting (see Fig.  2). Thus, 
the average ODBA for evenings after the period of inter-
est (avg_ODBA_aft) emerged as an important predic-
tor, along with the other comparative ODBA metrics 
(ODBA_ratio, greatest_ODBA, and greatest_ODBA_aft). 
These metrics may be especially useful in distinguish-
ing the actual nesting event from abandoned nesting 
attempts in which a tortoise starts nesting but abandons 
the nest prior to oviposition.

While our models generally performed with high accu-
racy, misclassifications among novel data may present 
significant ramifications. In conservation applications, 
erroneously identified nesting locations may increase 
the field efforts required to validate nests, recover eggs, 
or protect nests. Our models generally had higher pre-
cision than sensitivity (Supp Table  1), which suggests 
that falsely identifying a nest (i.e., a false positive) is less 
likely than missing one entirely (i.e.,  a false negative). 
Given the species’ conservation status, failure to protect 
nests may outweigh the additional fieldwork required to 
address false positives. As a result, the model may need 
to be adjusted to prioritize sensitivity. Moreover, errors 
in identifying true nesting events may affect estimates of 
fecundity or nesting phenology. Research or conserva-
tion goals will ultimately determine whether the model’s 
sensitivity is adequate or if these estimated errors can be 
mitigated through additional modeling. One potential 
solution for differentiating true and false positives could 
be applying a biological filter based on the physiological 
limitations of the species. For example, we determined 
from radiographs and field validation of nesting events 

Fig. 4 Presumed reasons for misclassification of giant tortoise nesting events for the top Random Forest models constructed from triaxial 
accelerometer data. Type I errors were events that were not confirmed as nesting events in the field, but were classified as nesting events 
by the models. Type II errors consist of events identified as nesting activity through manual review of acceleration data which were classified 
as non‑nesting by the models. There were 26 unique events included in the misclassified data, but events may have been misclassified multiple 
times across model iterations. Percentages include the total number of instances that a given event was misclassified.
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that C. donfaustoi requires an average of 36 days to re-
clutch. This information allowed for reclassification of 
several Type I errors as “abandoned nesting attempts” 
(Fig. 4). Conversely, there were two events that the algo-
rithms consistently classified as nesting, yet they were 
not confirmed during field validation. Considering fac-
tors such as the minimum times required for re-clutch-
ing and the geographical range occupied by the females 
during the events, there is a strong likelihood that these 
unconfirmed events were indeed nesting activities that 
were overlooked during the sampling period.

One considerable limitation to the design of this study 
is that, given the importance of metrics which compare 
activity before and after nesting events, there is limited 
opportunity to validate how well the model distinguishes 
between non-nesting, pre-nesting, and post-nesting 
behaviors. In assigning the presumed reason for misclas-
sified events, five were identified as probable abandoned 
nesting attempts. However, we did not validate this 
behavior and cannot presently quantify how commonly 
this behavior occurs. While our models successfully dif-
ferentiate between nesting and non-nesting behaviors, it 
may conflate these additional, closely related behavioral 
categories due to the overlap in behavioral signatures. 
Depending on research objectives, practitioners should 
consider accounting for these distinctions, perhaps by 
expanding validation efforts to include these nuanced 
behaviors. Identification of digging motions within the 
accelerometer data (e.g., [93]) and further exploration 
into the differences in activity levels before and after 
known nesting events could be avenues to shed light 
on pre-  or post-nesting activities and associated energy 
expenditure [76, 78].

To examine generalizability of the models, we trialed 
three cross-validation strategies: temporal, individual, 
and random. Of the three strategies, random valida-
tion had the poorest predictive performance. This result 
was unexpected considering random selection of vali-
dation data often improves error estimates, even inflat-
ing the estimates among structured ecological data [85, 
94]. However, given that a common objective of train-
ing behavioral classifier models is to enable observa-
tion of animals without labeled data, evaluation of the 
model’s performance on novel individuals is inherently 
more meaningful. This is of particular interest for appli-
cation among species that have remote sub-populations, 
as training data can be collected from individuals that 
are more accessible for observation and the model can 
subsequently be applied to unlabeled data. The mod-
els built using temporally delimited data also performed 
well. This provides promising applications for long-term 
monitoring of the same individuals. Labeled data can be 
collected until sufficient to train the models, after which 

reproductive monitoring can proceed without the need 
for on-the-ground observation. This approach offers the 
opportunity to assess behavior through time and various 
climatic conditions, and ultimately identify responses to 
climate change. Both the temporal and individual gener-
alizability of our model present opportunities to explore 
inter- and intra-individual variation.

While continuous, coarse-frequency sampling and 
burst sampling both address challenges related to data 
storage and transmission, the choice of regime can influ-
ence the types of behaviors that can be identified. Because 
burst data typically still collected at high-frequency reso-
lutions, these data can provide more confidence in the 
discrete behaviors that occur at the time of sampling. 
Therefore, burst data could be used to assign fine-scale 
behaviors (e.g., walking, foraging) to specific bursts, 
potentially leading to more options in future analyses. 
In our study system, long-term accelerometer data have 
been used to determine circadian and circannual activity 
patterns [32], but also have the potential to be used in the 
identification of shorter-duration behaviors. In the pre-
sent study, the degree to which metrics not based directly 
on the ODBA of the event of interest (e.g., active_prop, 
avg_ODBA_aft) underscores the potential for burst sam-
pling regimes to distinguish behaviors in other species, 
even when overall movement rates are low or the animal 
exhibits minimal change in body posture. However, burst 
data could also miss critical aspects of animal’s behavior 
if collection is too sparse. Yu et al. [95] demonstrated the 
diminishing accuracy of behavioral classifications with 
increasing intervals between bursts, especially for more 
infrequent behaviors. Coarse-frequency data collection 
might help integrate rarer behavior that burst sampling 
can miss. Overall, the approach based on summary vari-
ables are flexible enough to be applied to both types of 
data.

One possible avenue for bridging the gap between the 
demand for high-resolution continuous acceleration data 
and data storage limitations is on-board summarization 
of accelerometer metrics. On-board processing of accel-
eration data has previously been used to inform GPS fix 
rates such that fewer fixes are acquired while the animal 
is presumed to be resting [5]. This technique has been 
used to derive summarized metrics of body accelera-
tion for windows of time [39, 95, 96] and also to directly 
classify behavior [97]. One advantage to this method is 
that the storage requirements and satellite relay capabili-
ties for summarized values is much smaller than that of 
raw accelerometry values. However, this approach may 
be most effective for long-term data storage if the met-
rics for identifying behaviors of interest are known prior 
to deployment of the device. If the raw values are erased 
as they are processed to maximize storage potential, the 
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flexibility of what can be derived from the data is lim-
ited. Yu et  al. [97] successfully alleviated storage capac-
ity issues by relying on Bluetooth and cellphone towers, 
though this infrastructure is more challenging to use in 
remote locations with limited cellphone reception.

While there are a number of studies which have suc-
cessfully derived activity budgets or identified short-
duration animal behavior from coarse-frequency [1, 9, 
98, 99] or burst-sampled [1, 11, 100–102] accelerometer 
data, relatively few have applied these sampling regimes 
to longer-duration or aggregated behaviors. Never-
theless, several studies have shown the utility of these 
methods in detecting prolonged animal behaviors. For 
instance, Schreven et  al. [103] combined GPS tracking 
and accelerometry to detect nesting attempts in Arctic-
breeding pink-footed geese (Anser brachyrhynchus), suc-
cessfully applying non-continuous accelerometer data to 
the remote identification of nest sites, incubation behav-
ior, and nesting success. In a similar application in Green-
land white-fronted geese (Anser albifrons flavirostris), 
Ozsanlav-Harris et al. [104] tested the sensitivity of incu-
bation behavior models to reductions in the frequency 
of both GPS fixes and accelerometer bursts. Accelerom-
eter-only models constructed with the smallest interval 
between acceleration bursts (6 min) and the largest inter-
val tested (144 min) both obtained a precision greater 
than 0.9, although models using shorter intervals were 
generally more predictive than longer intervals [104]. 
Non-continuous accelerometer data have also previously 
been used to successfully identify behaviors associated 
with lekking in little bustards (Tetrax tetrax; [35]). Con-
sidering the long reproductive season of many lekking 
species, adequate monitoring through human observa-
tion can be costly and potentially affect animal behavior 
or lek attendance [105]. Remote identification of incuba-
tion or lekking behavior could be useful in identifying 
the effect of climatic conditions or landscape changes on 
these important reproductive activities [35] or assist in 
the location of previously unknown lekking grounds or 
nesting areas for conservation purposes.

Another potential application for burst or coarse-
frequency sampling could be in examining long-dura-
tion behaviors of animals that spend extended periods 
underground or in a dense structure (e.g., a beaver’s 
lodge). Biologging devices deployed on these animals 
may have dramatically decreased fix success rates [106], 
and thus data storage and transmission may be of con-
cern. Prolonged, biologically relevant activities, such as 
burrow construction, could potentially be detected and 
analyzed using similar techniques as we employed here. 
Accelerometer data could aid in differentiating ener-
getically demanding activities occurring in these cryp-
tic locations from other vital long-duration behavior 

exhibited by many animals such as rest. Using accel-
erometer data a continuous sampling frequency of 20 
Hz, Mortlock et  al. [107] were able to detect sleep in 
wild boar (Sus scrofa) with 98% accuracy. However, the 
ability to decipher body posture during periods of low 
accelerometer activity was key in differentiating sleep 
from wakeful rest. Further exploration into the effi-
cacy of the model on down-sampled data could reveal 
how gaps in the data like those in burst sampling would 
affect estimates of sleep.

We recommend that practitioners seeking to apply 
similar methodologies consider the biology and ecol-
ogy of their species of interest. In the case of iden-
tifying chelonian nesting activity, the time window 
approach we employed here assumes that the species 
displays some predictability in nesting phenology. This 
would work well for other chelonians with similar daily 
activity patterns and nesting ecologies (e.g., sea turtles 
which nest nocturnally [108]). However, some spe-
cies typically nest diurnally [109], meaning that other 
activities, such as foraging, temporally overlap with 
nest construction. In these instances, it may be neces-
sary to adjust data sampling frequency, the choice in 
predictor variables, or the inclusion of data from paired 
sensors, such as GPS, to disentangle these behaviors. 
Regardless, the effort required to identify the ideal 
input parameters for a remote nest identification tool 
for novel chelonian species may be worthwhile, as che-
lonians are among the most rapidly declining vertebrate 
groups [110].

Conclusions
Our study presents a successful example of classifying 
biologically meaningful behavior using summary statis-
tics derived from non-continuous accelerometer data. 
Through the application of ensemble machine learning 
models, we reliably identified nesting behavior, a critical 
determinant of reproductive success in giant tortoises 
and many other species of birds, reptiles and fish. We 
recommend further exploration of the generalizability 
of these models and techniques across different species 
and populations. Elucidating long-term patterns and 
variation in reproductive activity can help predict how 
animals may respond to environmental variation, includ-
ing anthropogenic disturbance. Reliable identification 
of important locations for reproductive success in space 
and time can enable managers to improve the efficacy of 
conservation actions for giant Galapagos tortoises and 
potentially numerous other wildlife species.

Abbreviations
BRT  Boosted Regression Trees
ML  Machine Learning



Page 14 of 16Donovan et al. Animal Biotelemetry           (2024) 12:32 

ODBA  Overall Dynamic Body Acceleration
RF  Random Forest

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40317‑ 024‑ 00387‑w.

Additional file 1.

Acknowledgements
We thank the Galapagos National Park Directorate for permission to conduct 
this study. This publication is contribution number 2685 of the Charles Darwin 
Foundation for the Galapagos Islands. We thank Gislayne Mendoza and Anne 
Guezou for their assistance with fieldwork.

Author contributions
EBD, SB, SLD, and GBR conceived the idea and designed the methodology. FC 
and CP led data collection efforts in the field and were assisted by all other 
authors. EBD conducted the analyses and wrote the initial manuscript. All 
authors contributed to the development of the manuscript and approved of 
it for publication.

Funding
This research was supported by Southern Illinois University, the Max Planck 
Institute for Animal Behaviour (Radolfzell, Germany), the National Geographic 
Society (CRE grant No. WWW‑048R‑17 awarded to SB), e‑obs GMBH, the Saint 
Louis Zoo Institute for Conservation Medicine, the Houston Zoo, and the 
Galapagos Conservation Trust.

Data availability
All tortoise GPS and accelerometry data used in this study are publicly avail‑
able through www. moveb ank. org within the Galapagos Tortoise Movement 
Ecology Programme study.

Declarations

Ethics approval and consent to participate
This research was conducted under Southern Illinois University at Carbondale 
Animal Care and Use Protocol #21‑021. This work was also properly permit‑
ted through the Galapagos National Park (permit numbers PC‑25‑22 and 
PC‑37‑23).

Consent for publication
Not applicable.

Competing interests
We declare that the authors have no competing interests.

Author details
1 Cooperative Wildlife Research Laboratory, Southern Illinois University, 
Carbondale, IL, USA. 2 Department of Biology, Saint Louis University, Saint 
Louis, USA. 3 Max Planck Institute for Animal Behavior, Radolfzell, Germany. 
4 Saint Louis Zoo, Saint Louis, USA. 5 Charles Darwin Foundation, Santa Cruz, 
Galapagos, Ecuador. 

Received: 18 July 2024   Accepted: 14 October 2024

References
 1. Brown DD, Kays R, Wikelski M, Wilson R, Klimley AP. Observing the 

unwatchable through acceleration logging of animal behavior. Anim 
Biotelemetry. 2013;1:1–16.

 2. Shepard EL, Wilson RP, Quintana F, Laich AG, Liebsch N, Albareda DA, 
et al. Identification of animal movement patterns using tri‑axial acceler‑
ometry. Endanger Spec Res. 2008;10:47–60.

 3. Halsey LG, Shepard EL, Wilson RP. Assessing the development and appli‑
cation of the accelerometry technique for estimating energy expendi‑
ture. Comp Biochem Physiol A Mol Integr Physiol. 2011;158(3):305–14.

 4. Nathan R, Spiegel O, Fortmann‑Roe S, Harel R, Wikelski M, Getz WM. 
Using tri‑axial acceleration data to identify behavioral modes of free‑
ranging animals: general concepts and tools illustrated for griffon 
vultures. J Exp Biol. 2012;215(6):986–96.

 5. Brown DD, LaPoint S, Kays R, Heidrich W, Kümmeth F, Wikelski M. Accel‑
erometer‑informed GPS telemetry: reducing the trade‑off between 
resolution and longevity. Wildl Soc Bull. 2012;36(1):139–46.

 6. Wang G. Machine learning for inferring animal behavior from location 
and movement data. Eco Inform. 2019;49:69–76.

 7. Bergen S, Huso MM, Duerr AE, Braham MA, Schmuecker S, Miller TA, 
et al. A review of supervised learning methods for classifying animal 
behavioural states from environmental features. Methods Ecol Evol. 
2023;14(1):189–202.

 8. Bidder OR, Campbell HA, Gómez‑Laich A, Urgé P, Walker J, Cai Y, et al. 
Love thy neighbour: automatic animal behavioural classification of 
acceleration data using the k‑nearest neighbour algorithm. PLoS ONE. 
2014;9(2):e88609.

 9. Ladds MA, Thompson AP, Slip DJ, Hocking DP, Harcourt RG. Seeing it all: 
evaluating supervised machine learning methods for the classification 
of diverse otariid behaviours. PLoS ONE. 2016;11(12):e0166898.

 10. Browning E, Bolton M, Owen E, Shoji A, Guilford T, Freeman R. Predict‑
ing animal behaviour using deep learning: GPS data alone accurately 
predict diving in seabirds. Methods Ecol Evol. 2018;9(3):681–92.

 11. Williams HJ, Shepard E, Duriez O, Lambertucci SA. Can accelerometry 
be used to distinguish between flight types in soaring birds? Anim 
Biotelemetry. 2015;3:1–11.

 12. Iwata T, Sakamoto KQ, Takahashi A, Edwards EW, Staniland IJ, Trathan 
PN, et al. Using a mandible accelerometer to study fine‑scale forag‑
ing behavior of free‑ranging Antarctic fur seals. Mar Mamm Sci. 
2012;28(2):345.

 13. Harvey‑Carroll J, Carroll D, Trivella C‑M, Connelly E. Classification of 
African ground pangolin behaviour based on accelerometer readouts: 
validation of bio‑logging methods. Anim Biotelemetry. 2024;12(1):22.

 14. Clarke TM, Whitmarsh SK, Hounslow JL, Gleiss AC, Payne NL, Huveneers 
C. Using tri‑axial accelerometer loggers to identify spawning behav‑
iours of large pelagic fish. Mov Ecol. 2021;9(1):26.

 15. Fehlmann G, O’Riain MJ, Hopkins PW, O’Sullivan J, Holton MD, Shepard 
EL, et al. Identification of behaviours from accelerometer data in a wild 
social primate. Anim Biotelemetry. 2017;5:1–11.

 16. Patterson A, Gilchrist HG, Chivers L, Hatch S, Elliott K. A comparison of 
techniques for classifying behavior from accelerometers for two species 
of seabird. Ecol Evol. 2019;9(6):3030–45.

 17. Vázquez Diosdado JA, Barker ZE, Hodges HR, Amory JR, Croft DP, Bell 
NJ, et al. Classification of behaviour in housed dairy cows using an 
accelerometer‑based activity monitoring system. Animal Biotelemetry. 
2015;3:1–14.

 18. Wang Y, Nickel B, Rutishauser M, Bryce CM, Williams TM, Elkaim G, et al. 
Movement, resting, and attack behaviors of wild pumas are revealed by 
tri‑axial accelerometer measurements. Mov Ecol. 2015;3:1–12.

 19. Tatler J, Cassey P, Prowse TA. High accuracy at low frequency: detailed 
behavioural classification from accelerometer data. J Exp Biol. 
2018;221(23):jeb184085.

 20. Studd EK, Boudreau MR, Majchrzak YN, Menzies AK, Peers MJ, Seguin 
JL, et al. Use of acceleration and acoustics to classify behavior, generate 
time budgets, and evaluate responses to moonlight in free‑ranging 
snowshoe hares. Front Ecol Evol. 2019;7:154.

 21. Studd EK, Landry‑Cuerrier M, Menzies AK, Boutin S, McAdam AG, 
Lane JE, et al. Behavioral classification of low‑frequency acceleration 
and temperature data from a free‑ranging small mammal. Ecol Evol. 
2019;9(1):619–30.

 22. Auge A‑C, Blouin‑Demers G, Murray DL. Developing a classification 
system to assign activity states to two species of freshwater turtles. 
PLoS ONE. 2022;17(11):e0277491.

 23. Whitney NM, Papastamatiou YP, Holland KN, Lowe CG. Use of an 
acceleration data logger to measure diel activity patterns in captive 

https://doi.org/10.1186/s40317-024-00387-w
https://doi.org/10.1186/s40317-024-00387-w
http://www.movebank.org


Page 15 of 16Donovan et al. Animal Biotelemetry           (2024) 12:32  

whitetip reef sharks, Triaenodon obesus. Aquat Living Resour. 
2007;20(4):299–305.

 24. Shamoun‑Baranes J, Bouten W, Van Loon EE, Meijer C, Camphuysen C. 
Flap or soar? How a flight generalist responds to its aerial environment. 
Philos Trans R Soc B Biol Sci. 2016;371(1704):20150395.

 25. Murchie KJ, Cooke SJ, Danylchuk AJ, Suski CD. Estimates of field activity 
and metabolic rates of bonefish (Albula vulpes) in coastal marine habi‑
tats using acoustic tri‑axial accelerometer transmitters and intermittent‑
flow respirometry. J Exp Mar Biol Ecol. 2011;396(2):147–55.

 26. Ullmann W, Fischer C, Kramer‑Schadt S, Pirhofer Walzl K, Eccard JA, 
Wevers JP, et al. The secret life of wild animals revealed by accelerom‑
eter data: how landscape diversity and seasonality influence the behav‑
ioural types of European hares. Landscape Ecol. 2023;38(12):3081–95.

 27. Weegman MD, Bearhop S, Hilton GM, Walsh AJ, Griffin L, Resheff YS, 
et al. Using accelerometry to compare costs of extended migration in 
an arctic herbivore. Current zoology. 2017;63(6):667–74.

 28. Flack A, Nagy M, Fiedler W, Couzin ID, Wikelski M. From local collec‑
tive behavior to global migratory patterns in white storks. Science. 
2018;360(6391):911–4.

 29. Yu H, Muijres FT, te Lindert JS, Hedenström A, Henningsson P. Acceler‑
ometer sampling requirements for animal behaviour classification and 
estimation of energy expenditure. Animal Biotelemetry. 2023;11(1):28.

 30. Chen KY, David R Bassett J. The technology of accelerometry‑
based activity monitors: current and future. Med Sci Sports Exerc. 
2005;37(11):S490–500.

 31. Aulsebrook AE, Jacques‑Hamilton R, Kempenaers B. Quantifying mating 
behaviour using accelerometry and machine learning: challenges and 
opportunities. Anim Behav. 2024;207:55–76.

 32. Ellis‑Soto D. Determining activity patterns of Galápagos tortoises: an 
intra and inter‑island comparison through space and time: University of 
Konstanz; 2017.

 33. Ryan MA, Whisson DA, Holland GJ, Arnould JP. Activity patterns of 
free‑ranging koalas (Phascolarctos cinereus) revealed by accelerometry. 
PLoS ONE. 2013;8(11):e80366.

 34. Thery M. The evolution of leks through female choice: differential 
clustering and space utilization in six sympatric manakins. Behav Ecol 
Sociobiol. 1992;30:227–37.

 35. Gudka M, Santos CD, Dolman PM, Abad‑Gómez JM, Silva JP. Feeling the 
heat: elevated temperature affects male display activity of a lekking 
grassland bird. PLoS ONE. 2019;14(9):e0221999.

 36. Rintamäki PT, Karvonen E, Alatalo RV, Lundberg A. Why do black grouse 
males perform on lek sites outside the breeding season? J Avian Biol. 
1999;199:359–66.

 37. Cestari C, Loiselle BA, Pizo MA. Trade‑offs in male display activity with 
lek size. PLoS ONE. 2016;11(9):e0162943.

 38. Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, et al. 
Moving towards acceleration for estimates of activity‑specific meta‑
bolic rate in free‑living animals: the case of the cormorant. J Anim Ecol. 
2006;75(5):1081–90.

 39. Nuijten RJ, Gerrits T, Shamoun‑Baranes J, Nolet BA. Less is more: On‑
board lossy compression of accelerometer data increases biologging 
capacity. J Anim Ecol. 2020;89(1):237–47.

 40. Clutton‑Brock TH. Reproductive success: studies of individual variation 
in contrasting breeding systems: University of Chicago Press; 1988.

 41. Blake S, Cabrera F, Cruz S, Ellis‑Soto D, Yackulic CB, Bastille‑Rousseau G, 
et al. Environmental variation structures reproduction and recruitment 
in long‑lived mega‑herbivores: Galapagos giant tortoises. Ecol Monogr. 
2024;94:e1599.

 42. Wilson DS. Nest‑site selection: microhabitat variation and its effects on 
the survival of turtle embryos. Ecology. 1998;79(6):1884–92.

 43. McIntosh I, Goodman K, Parrish‑Ballentine A. Tagging and nesting 
research on Hawksbill Turtles (Eretmochelys imbricata) at Jumby Bay, 
Long Island, Antigua, West Indies. Annual Report Wider Caribbean Sea 
Turtle Network, University of Georgia, Athens, Georgia, USA. 2003.

 44. Gibbs JP, Goldspiel H. Population biology. Galapagos giant tortoises: 
Elsevier; 2021. p. 241‑60.

 45. Jensen EL, Gaughran SJ, Fusco NA, Poulakakis N, Tapia W, Sevilla C, et al. 
The Galapagos giant tortoise Chelonoidis phantasticus is not extinct. 
Commun Biol. 2022;5(1):546.

 46. Kubisch E, Ibargüengoytía NR. Reproduction. Galapagos Giant Tortoises 
Elsevier; 2021. p. 157–73.

 47. Cayot LJ. The history of Galapagos tortoise conservation. Galapagos 
giant tortoises: Elsevier; 2021. p. 333‑53.

 48. Cayot LJ, Campbell K, Carrión V. Invasive species: impacts, control, and 
eradication. Galapagos Giant Tortoises. Elsevier; 2021. p. 381–99.

 49. Charney ND. Galapagos tortoises in a changing climate. Galapagos 
Giant Tortoises: Elsevier; 2021. p. 317‑30.

 50. Flanagan JP. Tortoise health. Galapagos Giant Tortoises: Elsevier; 2021. p. 
355‑80.

 51. Ramon‑Gomez K, Ron SR, Deem SL, Pike KN, Stevens C, Izurieta JC, et al. 
Plastic ingestion in giant tortoises: an example of a novel anthropo‑
genic impact for Galapagos wildlife. Environ Pollut. 2024;340:122780.

 52. Blake S, Cabrera F, Rivas‑Torres G, Deem SL, Nieto‑Claudin A, Zahawi RA, 
et al. Invasion by Cedrela odorata threatens long distance migration of 
Galapagos tortoises. Ecol Evol. 2024;14(2):e10994.

 53. Nieto‑Claudin A, Deem SL, Rodríguez C, Cano S, Moity N, Cabrera F, 
et al. Antimicrobial resistance in Galapagos tortoises as an indicator of 
the growing human footprint. Environ Pollut. 2021;284:117453.

 54. Bacon JP. Some observations on the captive management of Galapa‑
gos tortoises. REPRODUCTIVE BIOLOGY AND DISEASES OF CAPTIVE 
REPTILES JB Murphy; JT Collins, eds Society for the Study of Amphibians 
and Reptiles. 1980:97–113.

 55. MacFarland CG, Villa J, Toro B. The Galapagos giant tortoises (Geo‑
chelone elephantopus) part II: conservation methods. Biol Cons. 
1974;6(3):198–212.

 56. Jackson MH. Galápagos: a natural history: University of Calgary press; 
1993.

 57. Trueman M, d’Ozouville N. Characterizing the Galapagos terrestrial 
climate in the face of global climate change. 2010.

 58. Snell HM, Stone PA, Snell HL. A summary of geographical characteristics 
of the Galapagos Islands. J Biogeogr. 1996;23(5):619–24.

 59. Laso FJ, Benítez FL, Rivas‑Torres G, Sampedro C, Arce‑Nazario J. Land 
cover classification of complex agroecosystems in the non‑protected 
highlands of the Galapagos Islands. Remote Sens. 2019;12(1):65.

 60. Poulakakis N, Edwards DL, Chiari Y, Garrick RC, Russello MA, Benavides E, 
et al. Description of a new Galápagos giant tortoise species (Chelo‑
noidis; Testudines: Testudinidae) from Cerro Fatal on Santa Cruz Island. 
PLoS ONE. 2015;10(10):e0138779.

 61. Cayot LJ, Gibbs JP, Tapia W, Caccone A. Chelonoidis donfaustoi: The 
IUCN Red List of Threatened Species 2017 [Available from: https:// doi. 
org/ 10. 2305/ IUCN. UK. 2017‑3. RLTS. T9037 7132A 90377 135. en.

 62. Sevilla C, Málaga J, Gibbs JP. Tortoise populations after 60 years of 
conservation. Galapagos giant tortoises: Elsevier; 2021. p. 401‑32.

 63. Blake S, Yackulic CB, Cabrera F, Deem SL, Ellis‑Soto D, Gibbs JP, et al. 
Movement ecology. Galapagos Giant Tortoises: Elsevier; 2021. p. 261‑79.

 64. Blake S, Yackulic CB, Cabrera F, Tapia W, Gibbs JP, Kümmeth F, et al. Veg‑
etation dynamics drive segregation by body size in Galapagos tortoises 
migrating across altitudinal gradients. J Anim Ecol. 2013;82(2):310–21.

 65. Bastille‑Rousseau G, Gibbs JP, Yackulic CB, Frair JL, Cabrera F, Rousseau 
LP, et al. Animal movement in the absence of predation: environmental 
drivers of movement strategies in a partial migration system. Oikos. 
2017;126(7):1004–19.

 66. Gibbons JW, Greene JL. X‑ray photography: a technique to deter‑
mine reproductive patterns of freshwater turtles. Herpetologica. 
1979;1979:86–9.

 67. Mueller JM, Sharp KR, Zander KK, Rakestraw DL, Rautenstrauch KR, 
Lederle PE. Size‑specific fecundity of the desert tortoise (Gopherus 
agassizii). J Herpetol. 1998:313–9.

 68. Loehr VJ, Henen BT, Hofmeyr MD. Reproduction of the smallest tortoise, 
the Namaqualand speckled padloper. Homopus Signatus Signatus 
Herpetologica. 2004;60(4):444–54.

 69. Lovich JE, Puffer SR, Agha M, Ennen JR, Meyer‑Wilkins K, Tennant LA, 
et al. Reproductive output and clutch phenology of female Agassiz’s 
desert tortoises (Gopherus agassizii) in the Sonoran Desert region of 
Joshua Tree National Park. Curr Herpetol. 2018;37(1):40–57.

 70. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
 71. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression 

trees. J Anim Ecol. 2008;77(4):802–13.
 72. Shuert CR, Pomeroy PP, Twiss SD. Assessing the utility and limitations 

of accelerometers and machine learning approaches in classifying 
behaviour during lactation in a phocid seal. Animal Biotelemetry. 
2018;6(1):1–17.

https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T90377132A90377135.en
https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T90377132A90377135.en


Page 16 of 16Donovan et al. Animal Biotelemetry           (2024) 12:32 

 73. Hanscom RJ, DeSantis DL, Hill JL, Marbach T, Sukumaran J, Tipton AF, 
et al. How to study a predator that only eats a few meals a year: high‑
frequency accelerometry to quantify feeding behaviours of rattlesnakes 
(Crotalus spp.). Animal Biotelemetry. 2023;11(1):20.

 74. Kirchner TM, Devineau O, Chimienti M, Thompson DP, Crouse J, Evans 
AL, et al. Predicting moose behaviors from tri‑axial accelerometer 
data using a supervised classification algorithm. Animal Biotelemetry. 
2023;11(1):32.

 75. Congdon JD, Gatten Jr RE. Movements and energetics of nesting 
Chrysemys picta. Herpetologica. 1989:94–100.

 76. Marchand T, Le Gal A‑S, Georges J‑Y. Fine scale behaviour and time‑
budget in the cryptic ectotherm European pond turtle Emys orbicula‑
ris. PLoS ONE. 2021;16(10):e0256549.

 77. Tucker CR. Use of automated radio telemetry to detect nest‑
ing activity in Ornate Box Turtles. Terrapene Ornata Am Midl Nat. 
2014;171(1):78–89.

 78. Auge A‑C, Blouin‑Demers G, Murray DL. Differences in activity between 
reproductive and non‑reproductive freshwater turtles during the nest‑
ing season. Herpetol Notes. 2024;17:153–9.

 79. Fraley C, Raftery AE, Scrucca L, Murphy TB, Fop M, Scrucca ML. Package 
‘mclust’. Gaussian Mixture Modelling for Model Based Clustering, Clas‑
sification, and Density Estimation. 2012.

 80. Márquez C. The natural history of the Galápagos giant tortoise. CreateS‑
pace Independent Publishing Platform 2019.

 81. Team RC. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing. Vienna, Austria 2023.

 82. Liaw A, Wiener M. Classification and regression by randomForest. R 
news. 2002;2(3):18–22.

 83. Greenwell B, Boehmke B, Cunningham J, Developers G, Greenwell MB. 
Package ‘gbm’. R package version. 2019;2(5).

 84. Bergmeir C, Benítez JM. On the use of cross‑validation for time series 
predictor evaluation. Inf Sci. 2012;191:192–213.

 85. Ferdinandy B, Gerencsér L, Corrieri L, Perez P, Újváry D, Csizmadia G, 
et al. Challenges of machine learning model validation using correlated 
behaviour data: evaluation of cross‑validation strategies and accuracy 
measures. PLoS ONE. 2020;15(7):e0236092.

 86. Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm 
validation with a limited sample size. PLoS ONE. 2019;14(11):e0224365.

 87. Han H, Guo X, Yu H, editors. Variable selection using mean decrease 
accuracy and mean decrease Gini based on random forest. 2016 7th 
ieee international conference on software engineering and service 
science (icsess); 2016: IEEE.

 88. Krauss C, Do XA, Huck N. Deep neural networks, gradient‑boosted trees, 
random forests: Statistical arbitrage on the S&P 500. Eur J Oper Res. 
2017;259(2):689–702.

 89. Yu H, Deng J, Nathan R, Kröschel M, Pekarsky S, Li G, et al. An evaluation 
of machine learning classifiers for next‑generation, continuous‑etho‑
gram smart trackers. Mov Ecol. 2021;9:1–14.

 90. Resheff YS, Rotics S, Harel R, Spiegel O, Nathan R. AcceleRater: a web 
application for supervised learning of behavioral modes from accelera‑
tion measurements. Mov Ecol. 2014;2:1–7.

 91. Watanabe S, Sato K, Ponganis PJ. Activity time budget during foraging 
trips of emperor penguins. PLoS ONE. 2012;7(11):e50357.

 92. Bryce CM, Dunford CE, Pagano AM, Wang Y, Borg BL, Arthur SM, et al. 
Environmental correlates of activity and energetics in a wide‑ranging 
social carnivore. Animal Biotelemetry. 2022;10:1–16.

 93. Barbuti R, Chessa S, Micheli A, Pucci R. Localizing tortoise nests by 
neural networks. PLoS ONE. 2016;11(3):e0151168.

 94. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera‑Arroita G, et al. 
Cross‑validation strategies for data with temporal, spatial, hierarchical, 
or phylogenetic structure. Ecography. 2017;40(8):913–29.

 95. Yu H, Klaassen CA, Deng J, Leen T, Li G, Klaassen M. Increasingly detailed 
insights in animal behaviours using continuous on‑board processing of 
accelerometer data. Mov Ecol. 2022;10(1):42.

 96. Cox SL, Orgeret F, Gesta M, Rodde C, Heizer I, Weimerskirch H, et al. 
Processing of acceleration and dive data on‑board satellite relay tags 
to investigate diving and foraging behaviour in free‑ranging marine 
predators. Methods Ecol Evol. 2018;9(1):64–77.

 97. Yu H, Deng J, Leen T, Li G, Klaassen M. Continuous on‑board behav‑
iour classification using accelerometry: a case study with a new 

GPS‑3G‑Bluetooth system in Pacific black ducks. Methods Ecol Evol. 
2022;13(7):1429–35.

 98. Wang J, He Z, Zheng G, Gao S, Zhao K. Development and validation 
of an ensemble classifier for real‑time recognition of cow behavior 
patterns from accelerometer data and location data. PLoS ONE. 
2018;13(9):e0203546.

 99. Jin Z, Shu H, Hu T, Jiang C, Yan R, Qi J, et al. Behavior classification and 
spatiotemporal analysis of grazing sheep using deep learning. Comput 
Electron Agric. 2024;220:108894.

 100. Bom RA, Bouten W, Piersma T, Oosterbeek K, van Gils JA. Optimizing 
acceleration‑based ethograms: the use of variable‑time versus fixed‑
time segmentation. Mov Ecol. 2014;2:1–8.

 101. Fuchs NT, Caudill CC. Classifying and inferring behaviors using real‑time 
acceleration biotelemetry in reproductive steelhead trout (Oncorhyn‑
chus mykiss). Ecol Evol. 2019;9(19):11329–43.

 102. Clermont J, Woodward‑Gagné S, Berteaux D. Digging into the behav‑
iour of an active hunting predator: arctic fox prey caching events 
revealed by accelerometry. Mov Ecol. 2021;9:1–12.

 103. Schreven KH, Stolz C, Madsen J, Nolet BA. Nesting attempts and success 
of Arctic‑breeding geese can be derived with high precision from 
accelerometry and GPS‑tracking. Animal Biotelemetry. 2021;9:1–13.

 104. Ozsanlav‑Harris L, Griffin LR, Weegman MD, Cao L, Hilton GM, Bearhop 
S. Wearable reproductive trackers: quantifying a key life history event 
remotely. Animal Biotelemetry. 2022;10(1):24.

 105. Roy CL, Coy PL. Lek attendance and disturbance at viewing blinds in 
a small, declining Sharp‑tailed Grouse (Tympanuchus phasianellus) 
population. Avian Conserv Ecol. 2021;16(2):1.

 106. Pitman JB III, Bastille‑Rousseau G. Retention time and fix acquisition 
rate of glued‑on GPS transmitters in a semi‑aquatic species. Animal 
Biotelemetry. 2023;11(1):24.

 107. Mortlock E, Silovský V, Güldenpfennig J, Faltusová M, Olejarz A, Börger 
L, et al. Sleep in the wild: the importance of individual effects and 
environmental conditions on sleep behaviour in wild boar. Proc R Soc B. 
2023;2024(291):20232115.

 108. Troëng S, Rankin E. Long‑term conservation efforts contribute to posi‑
tive green turtle Chelonia mydas nesting trend at Tortuguero. Costa 
Rica Biol Conserv. 2005;121(1):111–6.

 109. Kuchling G. The reproductive biology of the Chelonia: Springer Science 
and Business Media; 2012.

 110. Rhodin AG, Stanford CB, Van Dijk PP, Eisemberg C, Luiselli L, Mittermeier 
RA, et al. Global conservation status of turtles and tortoises (order 
Testudines). Chelonian Conserv Biol. 2018;17(2):135–61.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Using non-continuous accelerometry to identify cryptic nesting events of Galapagos giant tortoises
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Study area and tortoise movement tracking
	Nesting training data collection
	Gravidity assessments
	Identification of nesting events

	Algorithm development
	Summary variable derivation
	Model training and evaluation


	Results
	Discussion
	Conclusions
	Acknowledgements
	References


