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Classification of African ground pangolin 
behaviour based on accelerometer readouts: 
validation of bio‑logging methods
Jessica Harvey‑Carroll1,2,3*, Daire Carroll2,3*, Cara‑Marie Trivella1 and Ellen Connelly1 

Abstract 

Background Understanding how free‑ranging animals behave can help in the design of optimal management 
strategies to both conserve species and enable individuals to express natural behaviours, maximising welfare. Animal‑
borne accelerometers passively collect data on body acceleration which can be interpreted to quantify behaviour. 
Accelerometers are increasingly used in behavioural research, however validation of accelerometer readouts to enable 
classification of discrete behaviours is required for each species. Pangolins are a heavily trafficked clade of mammals, 
all of which are considered vulnerable to extinction. They are also under‑researched, with little known about their 
behaviour in the wild. In this study, we present the first validation of behavioural classification based on accelerometer 
readouts for a pangolin species; the ground pangolin (Smutsia temminckii).

Results We present a standardised protocol for attaching accelerometers to pangolins to minimise the impact 
of devices on welfare. We match the readouts from accelerometers to behaviours defined through video observa‑
tions. Using a random forest classification, we defined five discrete behaviours (walking, digging, feeding, investi‑
gating ground, and stationary, accuracy of 85%) and three activity levels (low, medium, and high, accuracy of 94%) 
from accelerometer readouts. We determine optimal sampling frequency and window length (50 Hz and five sec‑
onds for discrete behaviour, 10 Hz and seven seconds for activity level). We then deploy accelerometers and classify 
the behaviour of three free‑ranging pangolins for between two and four days. We find considerable variation in peak 
daily activity between free‑ranging pangolins with different individuals displaying nocturnal and crepuscular behav‑
iour. We also find that pangolins spend the majority of their time (between 62 and 71%) at rest.

Conclusion The methods we present will enable the quantification of ground pangolin behaviour in the wild 
to improve our understanding of the species’ ecology and help inform conservation efforts. This will also help 
to improve our fundamental understanding of animal behaviour and ecology.

Keywords Conservation, Endangered species, Machine learning, Population monitoring, Random forest, 
Rehabilitation, Smutsia temminckii, Trafficking

Introduction
Animal behaviour emerges as a result of interac-
tions between the individual and their environment 
[1]. Changes in behaviour allow an animal to exploit 
resources and avoid threats, ultimately playing a large 
role in determining individual fitness and the long-term 
success of populations and species [2, 3]. Quantifying 
behaviour can give early warning signs of environmental 
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change, both natural and anthropogenic, which may 
eventually impact population dynamics [4–6]. Under-
standing behaviour is therefore critical both for con-
servation and for monitoring the health and welfare of 
animals [7–9].

Studying the behaviour of free-ranging animals pre-
sents multiple challenges [10, 11]. Quantitative assess-
ments of behaviour to determine trends and responses to 
external factors often require the observation of relatively 
large numbers of individuals for long periods of time 
[12]. In the wild, species may be difficult to find and track 
[13, 14]. Additionally, the presence of an observer can 
alter animal behaviour [10, 15, 16]. As a result, fine-scale 
wild animal behaviour has been understudied relative 
to more accessible captive animal models [17]. Increas-
ingly, remote sensing methods, such as unmanned aer-
ial vehicles (UAVs/drones), and static camera traps are 
employed in wildlife monitoring [18–21]. While these 
technologies present new opportunities for studying wild 
animal behaviour, they are limited to accessible animals 
and often ill-suited for consistent monitoring over longer 
time scales, such as detecting seasonal variation in fine-
scale behavioural patterns.

Animal-borne bio-logging devices (bio-loggers) over-
come many of the challenges associated with monitoring 
animal behaviour both in the wild and in captivity [10, 
17]. These devices are attached to the animal and record 
data which is either transmitted or collected when the 
device is retrieved [22]. Accelerometer loggers (hereafter 
referred to as ‘accelerometers’) are a promising type of 
biologger, increasingly used in the study of animal behav-
iour [10]. Tri-axial accelerometers measure the rate of 
change in velocity on three axes (X, Y and Z). Different 
behaviours result in unique patterns of three-dimensional 
acceleration, enabling them to be interpreted from accel-
erometer readouts [22]. Accelerometer data are suitable 
for automated processing using ‘data hungry’ methods 
due to their high temporal resolution [23–25]. Acceler-
ometers are increasingly light and affordable, enabling 
their deployment for extended periods of time to capture 
biological and ecologically significant events which can-
not be monitored through traditional methods [10, 24].

Despite the widespread incorporation of animal-borne 
devices into monitoring programmes, there remain 
several questions which should be answered to ensure 
effective and ethical data collection [10, 26, 27]. When 
conducting animal research, it is the ethical obligation of 
the researcher to maximise the efficiency of devices and 
minimise the impact on individuals [25]. Many studies 
using accelerometers have presented little justification 
of the choice of sampling frequency, window length (the 
smallest unit of time over which behavioural data are 
analysed), device placement, or attachment type [10, 26]. 

Selecting an appropriate sampling frequency requires a 
trade-off between data resolution and internal storage 
capacity, which in turn determines how often animals are 
handled [13, 28]. Device placement and attachment type 
should be optimised to ensure there is minimal interfer-
ence with the animal’s range of motion and welfare [27]. 
For accelerometers, device position also influences how 
well behaviours can be determined based on readouts 
[29–31]. For each animal model, calibration and stand-
ardisation should be conducted [31].

All species of pangolin are currently considered vul-
nerable to extinction [32]. One of the main threats to 
this clade is poaching and trafficking for bushmeat and 
use in traditional medicine [33–35]. As a result, seizure 
of live pangolins by authorities is common, and subse-
quent rehabilitation and release is an important aspect of 
conservation [36]. How well released individuals reinte-
grate into wild populations is not currently known, with 
existing monitoring programmes relying on coarse posi-
tional data from satellite tags [37, 38]. Using accelerom-
eters to quantify the behaviour of free-ranging pangolins 
would present opportunities to improve existing release 
protocols.

In this study, we present standardised protocols for the 
use of accelerometers to study the behaviour of African 
ground pangolins (Smutsia temminckii). We present a 
standardised position and attachment type to minimise 
device impact on behaviour and welfare. Through calibra-
tion using ethograms, we develop automated classifiers to 
determine pangolin behaviour and activity level based on 
accelerometer readouts. We then use accelerometers to 
quantify the behaviour of free-ranging pangolins. Mov-
ing forward, this work can be applied immediately to the 
study of African ground pangolins and developed further 
to incorporate more pangolin species.

Methods
Ground pangolin individuals
Ground pangolins recovered from trafficking in Zimba-
bwe undergo rehabilitation with the Tikki Hywood Foun-
dation prior to release [38]. Device attachment protocols 
and validation of interpretation of accelerometer read-
outs were carried out by attaching devices to five healthy 
individuals in care (Harare, Zimbabwe) and one free-
ranging individual post-release (Gonarezhou National 
Park, Zimbabwe). Following validation, devices were 
attached to three free-ranging post-release individuals 
(Gonarezhou National Park, Zimbabwe, Table  1). These 
individuals were not under observation between device 
attachment and retrieval. One of the individuals (Shura) 
was used for both validation and unobserved free-rang-
ing deployment.
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Device design, positioning, and attachment
Ground pangolin scales present many possible attach-
ment sites for bio-loggers. Previous work has indicated 
that (i) devices should be attached at a single point along 
the midline so as not to interfere with natural behav-
iours; (ii) devices should be dull and dark in colour, with 
no exposed lights; (iii) devices should break off if they 
become entangled or during a predator attack; and (iv) 
devices should be equivalent to no more than 3% of the 
animals body mass [27, 38]. For measuring fine-scale 
behaviour, accelerometers are generally advised to be 
attached in a manner that leaves them rigid and fixed in 
place. This ensures that the dimensions of movements 
remain constant throughout deployment [10, 39]. Such 
an attachment would have interfered with the manoeu-
vrability of pangolins and was deemed inappropriate for 
the current study.

An attachment site was selected on the first central 
dorsal scale caudally from the pelvis (Fig.  1a, b). Seven 
mm holes were drilled through distal portion of scales. 
AxyTrek accelerometers (TechnoSmart, EU) were 
mounted on flexible cattle ear tags (length: 9.8 cm, width: 
4.2 cm), enabling removal in the event of predator attack 
or entanglement (Fig.  1b). Initial validation was carried 
out using orange tags. These were replaced with black 
tags for free-ranging pangolins (Additional file  2: Fig. 
S1). Tags were secured at a single point using a six mm 
bolt with a sleeve threaded through the ventral side and 
secured with a nut on the dorsal side of the scale (Fig. 1c). 
The total mass of the device, tag, and bolt was 46 g (< 3% 
the mass of any pangolins used in this study, Table 1).

Data collection
Accelerometers were configured to record 50  Hz data, 
with a dynamic range of ± 8  g (G fullscale) and an 8-bit 
resolution. During validation, pangolin behaviour was 
recorded using a GoPro Hero 11, with GoPro labs 

Precision Date and Time (UTC). For pangolins in care, 
this was done during daily foraging walks. During walks, 
pangolins were given free range to forage for food while 
under supervision of a handler. Pangolins explored var-
ied terrain, with the handler intervening only to redirect 
the pangolin. The one free-ranging pangolin included in 
the validation stage (Shura, Table  1) was opportunisti-
cally fit with an accelerometer and filmed while foraging. 
To enable synchronisation of annotated behaviours and 
accelerometer readouts, the start and end times of vid-
eos were synchronised to UTC by recording the time on 
a GPS app (GPS test, Chartcross Limited) [40]. Footage 
of the app was recorded for a minimum of five seconds at 
the start and end of each filming session.

To include time spent sleeping, which generally occurs 
in dens in the wild, three pangolins in care (Dakari, 
Impi, and Yakachena, Table  1) were fit with accelerom-
eters while resting in sleeping boxes (length = 55  cm, 
width = 55  cm, Height = 60  cm). In boxes, pangolins are 
mostly stationary, with a handler remaining in the room 
and noting any audible movements.

Behavioural classification
Behaviours were grouped into i) seven discrete behav-
iours and ii) three activity levels (Additional file  1: 
Materials 1, Table 2). Based on videos, a single observer 
generated an ethogram (Table  2). The exact time each 
behaviour started and finished was recorded. Any direct 
interactions between handlers and pangolins (e.g., redi-
recting or picking them up) were removed from analysis. 
A total of 13,824.43  s of video footage were annotated. 
Eight minutes spent in the sleeping box for each of three 
individuals were labelled as “stationary”. Head tucking 
(a defensive response to being startled) was excluded 
due to its short duration (< 2  s). “Rolling” was excluded 
as it was only recorded in one individual. Based on etho-
grams, accelerometer readouts were labelled with behav-
iours and activity levels. To account for the risk of time 

Table 1 Ground pangolins to which accelerometers were attached

Sex: M = male, F = female. Condition: RC = rehabilitation care, FR = free ranging. Location: Harare = close to Harare, Zimbabwe, Gonarezhou = Gonarezhou National 
Park, Zimbabwe. Purpose: V = validation, C = data collection. Dur. (s) = duration of video recording in seconds

Individual Sex Condition Location Mass (kg) Purpose Dur. (s)

1. Chaminuka M RC Harare 12.00 V 2556.66

2. Sindisiwe F RC Harare 4.60 V 3084.62

3. Dakarai M RC Harare 7.10 V 2650.07

4. Impi M RC Harare 8.75 V 2607.57

5. Yakachena M RC Harare 4.50 V 1756.30

6. Shura M FR Gonarezhou 13.99 V & C 1169.24

7. Fikile F FR Gonarezhou 12.35 C NA

8. Makwande M FR Gonarezhou 14.71 C NA
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synchronisation errors, the first and last seconds of each 
behaviour were omitted [40].

To optimise window length (the smallest unit of 
time for which behaviour is analysed), each segment of 
labelled behaviour in accelerometer readouts was split 
into equal blocks between one and eight seconds in 
length. As this was performed within each behaviour, 

no overlap of behaviour occurred within segments. 
For each of these window lengths, optimal sampling 
frequency was determined by resampling the original 
50 Hz data to generate 25, 12, 10, 8, 4 and 2 Hz datasets 
[28, 40]. Following Collins et al [26], 18 summary met-
rics were calculated for each block (Additional file  2: 
Table  S1) using adapted code from Clark  [ [41] and 
Clark et al [42].

Fig. 1 a Accelerometers were attached to the first central dorsal scale caudally from the pelvis. This enabled a full range of natural behaviours. b 
AxyTrek accelerometers (TechnoSmart, EU) were mounted on flexible cattle ear tags (seen here dissembled next to a pangolin scale). c Tags were 
secured at a single point using a 6‑mm bolt with a sleeve threaded through the ventral side and secured with a nut on the dorsal side of the scale. 
Orange ear tags were used for validation of methods on pangolins in care. Black ear tags were used for deployments on free‑ranging pangolins 
(Additional file 2: Fig. S1)

Table 2 Based on video analysis, behaviours were grouped into discrete behaviours and activity levels

Activity level Discrete behaviour Description

High Digging Digging in ground

Medium Walking Walking. Turning while walking. Collision while walking. Stumble or fall while walking. 
Returning to standing following a stumble or fall

Medium Feeding Actively eating with tongue moving, not digging

Medium Investigating ground Sniffing the ground, performing up to three exploratory scratches

Low Stationary In the sleeping box. A pause while performing another behaviour. Grooming. Defecating

NA Rolling Rolling in mud or faeces. Excluded due to being underrepresented in the data

NA Head tucking Rapidly tucks their head assuming a defensive posture. Excluded due to short duration
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Random forest classification
Random forest (RF) classification was used to automati-
cally classify behaviours. Separate RF models were devel-
oped to classify each dataset (split based on window 
length and sampling frequency) into detailed behaviours 
and activity levels (Table  2). Between the six pango-
lins, a total of 10,685 s of behaviour (“Digging” = 1140 s, 
“Walking” = 4338  s, “Feeding” = 2358  s, “Investigating 
ground” = 949  s, “Stationary” = 1900  s) were labelled for 
use in training and testing of the RF model (Additional 
file 2: Table S2).

Each dataset was randomly split into training (70%) 
and a testing (30%) datasets. RF models were fit to the 
training data [43]. Tuning parameters were set using 
the trainControl() function in the R-package caret. To 
account for repeated measures (i.e. multiple observations 
of each behaviour per pangolin), individual based tenfold 
cross validation was used, resulting in labelled data from 
individual pangolins being kept together in individual 
folds during splitting of training data [43, 44]. Due to the 
unequal behavioural group sizes (e.g., 50 Hz five-second 
window length; “Digging”: 186 segments, “Walking”: 
811 segments, “Feeding”: 426 segments, “investigating 
ground”: 136 segments, “stationary”: 368 segments), up-
sampling was conducted. A grid search was used to opti-
mise tuning parameters.

During fitting of the RF, the minimum node size was 
set to one, the importance of covariates to classification 
was calculated based on Gini index and the number of 
potential covariates to use at each split ranged between 
one and 18. The model was run for 1000 iterations. Area 
under the receiver operating curve (AUC), a measure of 
performance for classification problems, was calculated 
during model tuning and performance evaluation.

To evaluate performance, RF models were applied to 
testing datasets [28]. A confusion matrix was produced, 
using the confusionMatrix() function in the R-package 
caret, and model accuracies were calculated [45]. Optimal 
sampling frequency and window lengths were selected 
based on highest accuracy. For optimal RF models, the 
relative importance of summary metrics (Additional 
file  2: Table  S1) to accuracy and predictive ability were 
determined based on the impurity variable importance 
mode [46]. Accelerometer readouts from three free-rang-
ing pangolins were classified into discrete behaviours and 
activity levels using RF models for optimal parameters.

Software
Video analysis and ethogram generation was carried out 
in BORIS [47]. Subsequent data processing and visuali-
sation was conducted in R version 4.3.2 [48] with data 
organisation assisted by the dplyr, data.table, lubridate, 
zoo, and tidyverse packages and data visualisation using 

the ggplot2 package [49–54]. RF fitting and evalua-
tion was carried out using the caret [55] and ranger [46] 
packages.

All data, including annotated datasets, and code are 
available on GitHub https:// github. com/ JessH Carro 
ll/ Pango lin_ Accel erome ter_ Analy sis and archived on 
Zenodo https:// doi. org/ 10. 5281/ zenodo. 11179 372.

Results
Optimal sampling frequency and window length
The highest overall accuracy of RF classifications for 
discrete behaviours (accuracy = 85%, upper = 87%, 
lower = 81%, κ (Kappa coefficient) = 0.78) occurred with a 
window length of five seconds and a sampling frequency 
of 50 Hz (Fig. 2a, Additional file 2: Table S3). The high-
est overall accuracy for activity levels (94%, upper = 96%, 
lower = 91%, κ = 0.85) occurred with a window length 
of seven seconds and a sampling frequency of 10  Hz 
(Fig. 2B, Additional file 2: Table S4).

For both groupings, maximum heave was the most 
important predictor for classifying behaviours, closely 
followed by mean heave for activity levels (Fig. 3).

Changes in sampling frequency had variable effects 
on the accuracy of predicting individual behaviours. 
For example, changes in sampling frequency had lit-
tle effect on the accuracy of predicting the “Stationary”, 
“Walking”, and “Feeding” behaviours, while the accu-
racy of “Digging” and “Investigating ground” declined 
sharply between 50 and 25 Hz (Additional file 2: Fig. S2a, 
Table S3). Similarly, the accuracy of predicting the “Low” 
activity level remained relatively constant across sam-
pling frequencies, while there was a sharp reduction in 
accuracy between 25 and 12 Hz for “High” activity levels 
(Additional file 2: Fig. S2b, Table S4).

Classification of behaviour for free‑ranging pangolins
The behaviour of three free-ranging pangolins was classi-
fied based on accelerometer readouts into discrete behav-
iours, using a sampling frequency of 50 Hz and window 
length of five seconds (Fig. 4), and activity levels, using a 
sampling frequency of 10 Hz and window length of seven 
seconds (Additional file 2: Fig. S3).

Discussion
We have presented a validation of the use of acceler-
ometers to quantify the behaviour and activity level 
of ground pangolins and presented the first detailed 
record of the behaviour of free-ranging pangolins 
across multiple days. In future studies, we recommend 
the use of an optimal sampling frequency of 50  Hz 
and window length of five seconds if quantifying dis-
crete behaviours and a sampling frequency of 10  Hz 
and window length of seven seconds if quantifying 

https://github.com/JessHCarroll/Pangolin_Accelerometer_Analysis
https://github.com/JessHCarroll/Pangolin_Accelerometer_Analysis
https://doi.org/10.5281/zenodo.11179372
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Fig. 2 The accuracy of random forest (RF) models for classifying pangolin behaviour based on accelerometer readouts across sampling frequency 
(Hz) and window length (seconds) for a discrete behaviours and b activity levels

Fig. 3 The relative importance of the 18 summary metrics (Additional file 2: Table S1) used to fit random forest (RF) classification models for a 
discrete behaviours and b activity levels. Larger values indicate that metrics contributed more to the overall accuracy or predictive ability 
of the model. SD, standard deviation; Min., minimum; Max., maximum; ODBA, overall dynamic body acceleration; VeDBA, vectorial dynamic body 
acceleration



Page 7 of 11Harvey‑Carroll et al. Animal Biotelemetry           (2024) 12:22  

activity levels. For longer deployments when device 
storage is an issue, reasonable accuracy can also be 
achieved with sampling frequencies between six and 

50  Hz. The level of accuracy achieved by random for-
est (RF) classifiers were comparable to other studies of 
this kind (e.g., an accuracy of 86.96% for adult hawksbill 

Fig. 4 The classification of free‑ranging pangolin behaviour into discrete behaviours based on accelerometer readouts (sampling 
frequency = 50 Hz, window length = 5 s). These pangolins were not under observation outside of device attachment and retrieval. Grey shaded 
areas represent night. White areas represent day
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turtle (Eretmochelys imbricata), 79.49% for green tur-
tle (Chelonia mydas) [56], 82% for moose (Alces alces) 
[57] and 87% for dingo (Canis dingo) [58]). Our valida-
tion dataset included a range of pangolin sizes. While 
we acknowledge a bias towards males, we believe our 
results are generalisable to individuals of both sexes 
outside the study.

Animal-borne accelerometers are generally attached 
in a manner which ensures that devices are fixed in 
place (e.g., using adhesives or harnesses) [10, 39]. Given 
the size of pangolin scales relative to devices, it was not 
possible to attach them in a rigid manner while enabling 
the animal to carry out a full range of natural behav-
iours. Instead, flexible single point attachments were 
used which likely amplified device movement. We have 
demonstrated that such an attachment can result in 
classification of fine-scale behaviour with high levels of 
accuracy. As these protocols were selected while con-
sidering the individual welfare of animals, they are suit-
able for integration into ongoing post-release monitoring 
programmes.

Accelerometers attached to the back of an animal were 
previously suggested to be incapable of accurate classifi-
cation of fine-scale feeding behaviours [10]. We did not 
find this to be the case for pangolins, with high levels of 
accuracy (88%) when classifying “Feeding”. This is likely 
since pangolins are ant and termite eaters which employ 
specific global body poses and motions during feeding 
and may be true for other species with a similar diet.

We have shown that a window length of five seconds 
is appropriate to capture all but the most rapid of pan-
golin behaviours. A five-second widow length has been 
recommended for other species such as reindeer (Rangi-
fer tarandus) and sheep (Ovis aries) [59, 60]. Increas-
ing window length size is generally accepted to increase 
the accuracy of detecting complex behaviours, at a cost 
of increasing the likelihood of capturing transitions 
between behaviours, resulting in misclassification [59, 
61]. If rapid behaviours are of interest to future studies, 
the window length could also be decreased, although this 
would reduce overall accuracy.

Generally, higher accelerometer sampling frequen-
cies result in higher accuracy for behavioural classifica-
tion, although this depends on the behaviour of interest 
[28, 40, 61–63]. Higher sampling rates consume battery 
power and memory storage more quickly. Therefore, 
researchers should carefully consider these trade-offs 
during device deployment [28, 61, 63]. For ground pan-
golin, we have shown that the highest sampling fre-
quency (50  Hz) gave the highest levels of accuracy for 
discrete behaviours, however the highest levels of accu-
racy for activity levels were obtained at a lower frequency 
(10 Hz). In future, considerations should be given to the 

study question, which may not require full quantification 
of discrete behaviour.

A common limitation in the classification of accelerom-
eter readouts is distinguishing behaviours which occur 
at the same time, e.g., eating and walking [64]. This was 
not found to be an issue with pangolins as behaviours of 
interest did not occur concurrently. Although important 
discrete behaviours could be classified, pangolins in the 
wild carry out other behaviours of interest to research, 
such as mating, responding to predators, and interact-
ing with conspecifics, which could not ethically be simu-
lated for pangolins in care. This is similar to other studies 
which classify behaviour based on accelerometer read-
outs [65]. Among observed behaviours, “Head tucking” 
could not be included in analysis as it occurred faster 
than the behavioural segments of three seconds used to 
control for time synchronisation errors. Additionally, 
“Rolling” was only observed in one individual and could 
not be included in analysis. Increasing observation time 
in future work could therefore increase the number of 
detectable behaviours. Nonetheless, this work is the first 
of its kind for any pangolin species and promises to open 
new opportunities to study pangolin behaviour in their 
natural habitat. The methods used could easily be applied 
to other species of pangolin to validate the use of acceler-
ometers for quantifying behaviour.

As part of this study, accelerometers were deployed on 
free-ranging pangolins for between two and four days. 
This was intended as a proof-of-concept with the rela-
tively short period being selected so that data could be 
analysed immediately following the validation of behav-
ioural classification methods. The accelerometers used in 
this study can collect approximately one month of con-
tinuous data from a single deployment and are recharge-
able, making longer-term monitoring possible in future 
work.

Despite their relatively short duration, deployments 
of accelerometers revealed seemingly rhythmic daily 
behaviour for each of the three individuals with consid-
erable differences in peak activity times between them. 
Shura displayed nocturnal behaviour while Fikile and 
Makwande displayed crepuscular behaviour. Both Shura 
and Makwande also displayed short bouts of activity 
during the day, which, to our knowledge, has not pre-
viously been observed for ground pangolin. The over-
all range in behavioural peaks supports previous work 
which found that, within the same population, different 
ground pangolins display nocturnal, diurnal, and crepus-
cular behaviour [66–69]. Previous research has suggested 
that peak burrow emergence time by ground pangolins 
in the Kalahari is influenced by prey availability and tem-
perature [66, 70]. As the individuals in our study were 
exposed to broadly similar environmental conditions, our 



Page 9 of 11Harvey‑Carroll et al. Animal Biotelemetry           (2024) 12:22  

findings highlight the importance of individual variabil-
ity in behaviour. Generally, free-ranging pangolins were 
observed to spend a large amount of their time station-
ary (between 62 and 71%), supporting previous findings 
[69]. Future work should focus on extending this dataset 
to include more individuals to explore the influence of 
environmental factors on pangolin behaviour.

Introducing new individuals into ecosystems has the 
potential to increase intraspecific competition, for exam-
ple for food, mates, or suitable denning sites, negatively 
impacting the welfare of both released and wild animals 
[71, 72]. Behavioural changes, which can now be tracked 
for ground pangolins using accelerometers, could give 
indications of increased competition. The use of accel-
erometers to quantify the behaviour of ground pan-
golins during the transition from care to free ranging 
could therefore allow guidelines on the number of indi-
viduals which can be introduced into a population to be 
developed.

During rehabilitation and release as well as relocation 
and reintroduction programmes, understanding species’ 
habitat usage can increase the chance of survival and 
integration into established wild populations [73, 74]. 
The definition of a species’ optimal habitat is challenging 
given the range of complex factors involved as well as the 
plasticity of both physiology and behaviour within spe-
cies [76–78]. The quantification of individual behaviour, 
now possible on a larger scale than ever before thanks 
to the development of tools such as accelerometers, will 
inform on key metrics of animal welfare, such as daily 
activity rates or the time allocated to activities such as 
foraging. Quantifying metrics such as foraging effort can 
directly inform on habitat usage when combined with 
GPS location, allowing the definition of individual ranges 
and thus the suitability of certain sites for protection or 
the release of animals to be assessed. Daily activity can 
also be integrated into energy budgets, ultimately build-
ing into population-level models to inform on population 
viability [79–82].

Conclusion
We have validated the use of accelerometers to quantify 
the behaviour of ground pangolins. The protocols for 
device attachment and validation of behavioural classifi-
cation we have developed can be applied to other pango-
lin species in future. This work presents a new tool for 
the study of pangolin behaviour which promises to pro-
vide valuable information for the design of conservation 
strategies for this and other vulnerable species. It can 
also be used to improve our fundamental understanding 
of the interaction between animals and their environ-
ment, ultimately gaining new insights into animal ecol-
ogy, evolution, and how best to protect the natural world. 

We have found support for established views of pangolin 
behaviour, namely the fact that there is variation in the 
timing of peak activity between individuals in the same 
habitat and that they spend the majority of their time at 
rest. Further work should expand upon this to explore the 
influence of environmental factors on pangolin behaviour 
for more individuals across longer time scales.
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