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Abstract 

Background  Stingless bees are vital pollinators and honey producers in the tropics. Research on stingless bees 
is generally underrepresented compared to the western honeybees, and while stingless bee studies from some 
regions are reported, there is a particular lack of reports on the species endemic to Sub-Saharan Africa. Since con-
ventional entomological methods such as mark-recapture and radar harmonic tags suffer from limited observation 
counts and amount to a significant payload, fluorescent powder tagging offers a promising alternative to understand-
ing their behavior. We deploy a hyperspectral fluorescence lidar monitors a 25-mm-wide transect in front of the hives.

Results  During a 1 day study at the International Stingless Bee Center, near Kakum National Park, Ghana, 17,862 
insects were observed with the lidar, of which 7520 were tagged with fluorescent dyes. Approximately half 
of the bees from the selected hives were successfully tagged, with an estimated misclassification of 1%. According 
to our limited data, the observed species, Meliponula bocandei and the Dactylurina staudingeri exhibited different 
activity patterns. D. staudingeri displayed a half-hour longer active day, with clear crepuscular activity peaks. In con-
trast, M. bocandei activity was diurnal, with less pronounced crepuscular peaks.

Conclusions  We demonstrate how hyperspectral fluorescence lidar can monitor powder-tagged insects through-
out the day. The monitored species revealed distinct activity patterns over the day. Our findings highlight the poten-
tial of this technology as a valuable tool for understanding insect behavior and environmental preferences of species, 
in situ, which could potentially give clues of response to climate changes of these critical species.
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Introduction
Pollinators, particularly bees, play an indispensable 
role in supporting wild ecosystems [1] and agricultural 
production [2]. Honeybees often dominate the 
discourse on pollination, and their decline is covered 
in contemporary studies [3, 4]. However, in tropical 
and subtropical regions worldwide, the stingless 
bees comprise a majority of all eusocial bees, both in 
abundance and diversity [5, 6]. Stingless bees contribute 
to ecosystem biodiversity and bolster food security 
across Latin and South America, Asia, and Africa 
by pollinating a diverse range of crops [5, 7, 8]. They 
face alarming declines worldwide [9–11], and as a 
response, there are global interest in preservation as 
indicated by governmental and private initiatives [12]. 
Beyond their role in pollination, stingless bees, through 
meliponiculture (raising stingless bees), yield products 
such as honey, cerumen, propolis, and pollen. These 
products have significant economic and cultural value 
across societies [9, 13–16]. Despite their global relevance, 
there remains a notable research gap concerning stingless 
bees, particularly in Africa [17].

Understanding the activity patterns of these bees is 
crucial for discerning their distinct foraging strategies, 
relevant to tasks such as pollination [18], honey produc-
tion [19], and social cohesion within wild bee commu-
nities [20]. Comparative studies highlight that foraging 
strategies diverge among bee species. In Brazil, the sting-
less bee species Melipona subnitida was observed to 
decrease their pollen foraging round-trip durations dur-
ing the hottest hours of the day [21]. In Australia, the 
species Trigona carbonaria Smith’s daily activity period 
was found to be longer during the warmer months [22]. 
In Costa Rica, Melipona fasciata, M. beecheii, and M. 

favosa had longer daily foraging periods than Tetrago-
nisca angustula [23]. Such environmental preferences 
could indicate the species’ responses to upcoming cli-
mate changes. However, monitoring with high temporal 
resolution on multiple individuals is typically hindered by 
the lack of time-resolved data from conventional research 
methodologies [24, 25]. Furthermore, to our knowledge, 
no studies have detailed the daily activity pattern of the 
endemic African species Meliponula bocandei and Dac-
tylurina staudingeri. Both species are honey producing 
eusocial bees that thrive across Ghana’s diverse ecologi-
cal zones [26, 27]. M. bocandei typically nests in cavi-
ties featuring narrow entrance slits, while D. staudingeri 
constructs exposed nests on tree branches with mul-
tiple entrances [28]. These species play a crucial role in 
pollinating a variety of crops, including coconut, citrus, 
mango, cashew, and shea butter, contributing signifi-
cantly to agricultural biodiversity [29].

Insect behavior analysis involves a wide range of tech-
niques (see Table 1 for an overview). While methods like 
manual trapping and counting [24] provide foundational 
data, they can be time consuming and lack fine-scale 
resolution. Non-tagging techniques such as image-based 
tracking [30–33] and digital holography [34] offer 
insights but may be limited by frame rates and process-
ing demands. Hive entrance monitoring through visual 
observations and automated video tracking [35, 36], or 
hive sensors measuring weight, temperature, or vibra-
tions [37] provide robust activity monitoring, but typi-
cally focus on the hives or their immediate vicinity. Radar 
and lidar show great potential for monitoring insect 
migration at high altitudes [38–40] but are typically not 
applicable for foraging bees close to canopies. Further, 

Table 1  A comparison of different techniques for bee monitoring

Technique Strengths Weaknesses Best use cases

Visual observation Low cost, no setup Labor-intensive, limited specificity Insect abundance studies, behavioral/
interaction studies

Traps Species-specific, often low cost Often biased, poor spatial 
and temporal resolutions

Species-specific abundance estimation

Hive sensors High temporal resolution, low 
maintenance

Indirect measure, no individual 
tracking

Long-term colony monitoring

Video tracking High spatial and temporal resolution, 
3D tracking, low maintenance

Limited to specific observation area, 
needs data processing

Long-term and detailed movement 
tracking near hives

Mark-recapture Can track individuals, movement 
patterns

Labor-intensive, may disturb behavior, 
specificity often relies on field 
identification

Population estimates, behavioral studies

Radar/lidar Long range, high spatial and temporal 
resolution

High cost, resolution limitations 
for small insects, limited specificity

Large-scale migration, large-range 
dispersal patterns

Fluorescence-tagged lidar Can track individuals or specific hives, 
high spatial and temporal resolution, 
long range

Requires specialized instrument 
and initial alignment. Needs data 
processing

High temporal and spatial resolution 
monitoring of selected hives/individuals
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their ability to discriminate between species or individu-
als without additional tagging is limited [41, 42].

Tagging introduces specificity to entomological studies. 
Marking has been used for detailed analysis of insect 
lifespans [43], population densities [44], and dispersal 
patterns [45]. However, the efficacy of these tags varies. 
For instance, radio- and harmonic tags [46–48] are 
mainly used for tracing individual insects for long 
distances, and the payload weight can influence their 
behavior [49]. Combining fluorescence tagging with lidar 
was suggested decades ago [50], but had early challenges 
with observation counts and low signal strength [51]. 
Recent advancements include passive solar-induced 
fluorescence imaging. This method employs quantum 
dots as markers and harnesses the short-wave infrared 
(SWIR) solar absorption lines. However, its operation 
is confined to daytime hours and can be influenced by 
prevailing weather conditions [32]. In contrast, our group 
has introduced the active laser-induced fluorescence 
lidar [52], with no such limitations.

In this study, we used fluorescent tagging in 
combination with a novel hyperspectral lidar to 
investigate the activity patterns of the African stingless 
bee species M bocandei and D. staudingeri. We aim to 
assess the performance of this method for entomological 
monitoring by a comparative study of two species of 
stingless bees in Ghana.

Materials and methods
Experiment
This study was conducted at the International Stingless 
Bee Center (ISBC) near Kakum National Park [53, 54], 
Ghana (5°20′28.4"N, 1°22′39.4"W) on 17th March 
2022. The time of day is presented in solar time, with 
sunrise at 5:58  AM (91°E) and sunset at 6:03  PM 
(269°W). Temperature ranged from 26  ˚C to 32  ˚C, 
there was no rain, clear skies, and wind was below 3 m/s. 
Beehives of species Meliponula bocandei (M. bocandei), 

Dactylurina staudingeri (D. staudingeri), Hypotrigona, 
and Meliponula ferruginea were present on-site. 
The entrances of two hives were dusted with distinct 
fluorescent dyes (UV Holi powder, PaintGlow, UK): M. 
bocandei (green color) and D. staudingeri (red color), 
such that the bees leaving the entrance were auto-tagged. 
Dye was reapplied to the entrances with 2-h intervals. 
These colonies have been maintained at the ISBC for over 
a decade, and were originally collected from the wild [53]. 
There was no possibility to alter the positions of hives at 
the ISBC; hence, measurements were carried out with 
unmarked hives in the vicinity of the transect.

A hyperspectral fluorescence lidar was used to monitor 
a 25-mm-wide transect starting 5.8 m from the lidar and 
terminated on a neoprene board 23 m from the lidar. The 
lidar beam passed ~ 15 cm in front of both entrances of 
the tagged beehives located at 11 m and 17 m from the 
lidar (see Fig.  1). All other hives entrances were at dis-
tances > 50 cm from the transect. The lidar was powered 
by a diesel generator, allowing for 24 h of uninterrupted 
measurement, see Fig. 1a, b for an overview of the lidar 
transect and detailed lidar components.

Instrument
The hyperspectral lidar, inspired by [55, 56], was built 
at the Laser and Fibre Optics Centre (LAFOC) at the 
University of Cape Coast (UCC) in Ghana. The design 
and specifications were identical to those used in prior 
remote sensing fluorescence studies [52, 57, 58], with 
detailed parts, calibration information, and assembly 
instructions available in [52]. The lidar featured a 1 
W, 405  nm laser diode expanded to Ø25 mm with 
a collimating lens, followed by a folding mirror for 
alignment (Fig. 1b). The illuminated air was imaged onto 
a 200 µm slit by a Ø75 mm achromat by utilizing the 
“Scheimpflug configuration” and the “hinge rule” [59]. 
The slit was subsequently imaged onto the broad side 
of a CMOS image chip (1920 × 1200 pixel, 12-bit), with 

Fig. 1  Experimental setup a The lidar transect at the International Stingless bee center. The two tagged hives and all untagged hives in view are 
indicated. b Close-up photo of the lidar, highlighting major components
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a range accuracy of 5%. A grating-based spectroscopic 
insert was positioned between the slit and the camera, 
providing spectral information in the other direction 
of the sensor. The spectral range spans approximately 
390  nm to 810  nm and is resolved with 70 effective 
spectral bands. A lock-in detection method [52, 60] 
was employed for real-time ambient light subtraction, 
enabling daytime measurements up to 100 m range. The 
measurement geometry is limited to narrow line transect, 
which could be problematic for complex habitats. This 
technique implies that the laser is switched off and on 
for alternating exposures, making every other exposure 
contain signal and background, respectively.

Data pipeline
During the 24  h measurement period, 25,982 
measurement files were accumulated, each file 
representing a 3D data cube of intensity values I(x, y, n) 
in 12-bit. Here, x ∈

{
1...xchip

}
 , and y ∈

{
1...ychip

}
 are the 

pixel numbers where xchip = 1920 pixels and ychip = 1200 
pixels are the number of pixels on the (1920 × 1200 pixel) 
chip. Each file contains n ∈ {1...256} exposures, taken 
consecutively with 7.73 ms exposure time. One file covers 
2  s, and the temporal fill factor is 60% due to delays 
between recorded files.

Range calibration: the range was estimated using the 
Scheimpflug configuration through

where ℓBL = 310 mm is the length of the baseline, 
�slant = 2◦ is the slant angle, and �FoV = 6◦ is the angle 
between the optical axis and the beam expander, as 
discussed in [61–63]. The estimated range spanned from 
5.8 m to 120 m.

Wavelength calibration: the wavelength �
(
x, y

)
 was 

estimated through

where �0 ≈ 385 nm is the starting wavelength and 
�span ≈ 440 nm is the wavelength span. The small 
coefficients, δfan and δbend , describe the undesired 
‘keystone’ and ‘smile’ distortions [63, 64] that affect 
spectral registration at different ranges. The coefficients 
were determined using the known laser wavelength of 
the first and second diffraction orders at all ranges [52].

Background subtraction: lock-in detection was 
employed by switching the laser on and off for odd and 
even exposures. A background-subtracted signal was 
obtained by linear interpolation [65].

(1)r(x) = ℓBLcot

(
�slant +

�FoV x

xchip

)
,

(2)

�
(
x, y

)
= �0 + �span

y

ychip
+ δfan

x

xchip

y

ychip
+ δbend

(
x

xchip

)2

,

The above calibration procedure allowed each data 
cube I(x, y, n) to be analyzed and visualized with its 
range, wavelength, and time information represented in 
SI units, I(r, λ, t). One example data file is visualized in 
Fig. 2a in a 3D plot. In this data file the termination board 
is visible, and five insects were observed, two of which 
were powder tagged. The termination echo remains static 
over time at the 23 m range. The wavelength response is 
the same as the output laser wavelength, a so-called elas-
tic signal at λelastic = 405 nm. However, the second diffrac-
tion order of the elastic laser wavelength is also mapped 
at λ2nd = 810  nm. The termination echo appears as two 
horizontal lines, one for each diffraction order. The five 
insect observations manifest as elastic signals of first and 
second diffraction order. The fluorescence-tagged insects 
(highlighted in red and green in Fig. 2a) exhibit, in addi-
tion to the elastic signals, a green and a red fluorescence 
peak, respectively.

An insect detection scheme was established to find 
all insect observations. First, a region of interest in 
the range domain was defined as r ∈ [5.8  m… 21  m] to 
exclude the termination echo from further processing. 
Then, a signal-to-noise ratio SNR(r, t) was determined 
for each remaining time-range element by a spectral 
differentiation method:

where the maximum and median intensity norms 
were evaluated at the elastic wavelength λelastic and in a 
noise region surrounding the elastic wavelength, λnoise = 
[390  nm … 400  nm, 410  nm … 425  nm]. We defined 
another SNR measure for the second-order diffracted 
light,

where λnoise2 = [790 nm … 805 nm, 815 nm … 825 nm]. 
The minimum between SNRelastic and SNR2nd for each 
range–time pixel formed SNR(r, t), which is displayed for 
the example data file in Fig. 2b. Defining the final SNR(r, 
t) as the minimum of both the first- and second-order 
SNR reduces misclassification due to noise at the λelastic 
region or λ2nd, respectively. This process is illustrated 
in Fig.  2c, where the SNRelastic = 93 and SNR2nd = 36 , 
yielding an SNR of 36 for the insect observation.

The SNR(r, t) was compared to a threshold value 
SNRthres, producing a binary mask image B(t, r) = SNR(r, 
t) > SNRthres, resulting in B(t, r) = 1 for all (r, t) 
combinations that include an insect observation and 
B(t, r) = 0 otherwise. The binary image was then dilated 
to connect multiple exposures of the same insect. Five 
observations were found in the example file evaluated 

(3)SNRelastic(r, t) =
|I(r,�elastic ,t)|max−|I(r,�noise ,t)|median

|I(r,�noise ,t)|max−|I(r,�noise ,t)|median
,

(4)SNR2nd(r, t) =
|I(r,�2nd ,t)|max−|I(r,�noise2,t)|median

|I(r,�noise2,t)|max−|I(r,�noise2,t)|median
,
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in Fig.  2: three are purely elastic, one shows green 
fluorescence, and one shows red fluorescence. Three of 
the observations are highlighted in color in Fig. 2a,b; the 
corresponding spectra of the highlighted observations 
are found in Fig. 2c, e.

Metadata were saved for each extracted insect 
observation, and these data include the time and range 
information and quantification of how much elastic, 
green fluorescent, and red fluorescent light is detected. 
The quantification was accomplished by averaging the 
intensities of the corresponding spectral, range ∆r, and 
time ∆t regions of the observation,

The spectral regions ∆λgreen = [490 nm … 530 nm] and 
∆λred = [580 nm … 630 nm] correspond to the fluorescent 

(5)

Ielastic =
1

�r�t

∑

r=�r

∑

�=�elastic

∑

t=�t

I(r, �, t), Igreen

=

1

�r��green�t

∑

r=�r

∑

�=��green

∑

t=�t

I(r, �, t), Ired

=

1

�r��red�t

∑

r=�r

∑

�=��green

∑

t=�t

I(r, �, t).

Fig. 2  Data processing of a measurement file with insect observations. a Intensity values I(r, λ, t) of a measurement file containing five 
insect observations and the termination echo. Three selected insect observations are highlighted in different colors, an untagged––in violet, 
a green-tagged––in green, and a red-tagged––in red. The 3D signals are also projected in black to the wavelength–time plane at the bottom 
of the plot. b The signal-to-noise ratio SNR(t, r) of each range-time element of the measurement file. The selected insects’ spectra are in their 
respective colors in (c), (d), and (e). The values used to calculate the SNR in Eq. 1 and Eq. 2 are displayed in (c)

Fig. 3  Observation classification. A histogram of values of  Îgreen 
and  Îred for all observations. The threshold values for classifying 
an observation as untagged, green, or red fluorescent are visualized 
by colored regions in the contour plot
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regions of the green and red powder, respectively. Nor-
malized intensities,

from all observations are shown as a 2D histogram con-
tour plot in Fig.  3. The observations were classified as 
untagged, green, or red fluorescent based on the values 
of Îgreen and Îred . The classification thresholds are set by 
identifying the saddle points within the data in Fig. 3.

Analyzing all measurement files gave statistics on the 
SNR in the time–range pixels. A histogram of the SNR 
values is shown in Fig. 4a, where the insect observation 
and noise values follow two distinct lines in the plot. An 
SNR threshold value SNRthres can be set to a value that 
excludes most of the noise, as discussed in [65]. The 
mean, μ, and the standard deviation, σ, of the background 
subtracted observation spectra and the background from 
all observations are shown in Fig. 4b.

The described data pipeline effectively detects insects 
by differentiating the spectral response around the emit-
ted wavelength, both at the sensor’s first and second dif-
fraction orders. Through extensive statistical analysis, 
a robust threshold is set. The observations are classified 

(6)
Îgreen =

Igreen

Ielastic + Igreen + Ired
,

Îred =

Ired

Ielastic + Igreen + Ired
,

with a minimalistic scheme integrating intensity in differ-
ent spectral regions.

Results
The stingless bee activity during the 24  h measurement 
period is shown in Fig. 5. A total of 17,862 insects were 
observed with the lidar, with 7520 (42%) identified as 
tagged with fluorescent dye. This observation count 
equates to an average of ~ 1 insect per minute per meter 
throughout the day. However, this number was at its peak 
of ~ 50 insects per minute per meter during the morning 
rush hour (7:45–8:15).

The observations are categorized into green-tagged 
(M. bocandei), red-tagged (D. staudingeri), and untagged, 
represented in a contour plot as green, red, and gray, 
respectively (see Fig. 5a). The observation density (counts 
per meter) and frequency (counts per minute) throughout 
the day are displayed in Fig. 5b and Fig. 5c. Most of the 
green-tagged observations are found at the 11  m mark 
during daylight, while red-tagged observations are mostly 
found at the 17 m mark. This pattern is consistent with 
the locations of the tagged hives at 11 and 17 m from the 
lidar and the diurnal behavior of stingless bees. Due to 
imperfect powder tagging yield, untagged observations 
also have activity peaks at these distances, although less 
pronounced.

The activity patterns in Fig. 5c differ between the two 
tagged species and the untagged ones. D. staudingeri 
were observed from 05:50 (8 min before sunrise) to 18:04 
(1 min past sunset) with pronounced crepuscular activity 
peaks (8:00 and 16:30) and an activity minimum at 15:00. 
M. bocandei showed a 33-min shorter active day (06:12–
17:53), with no morning peak but increased activity 
throughout the day, culminating in a peak at 16:30.

Table 2 defines four different regions of range and time 
of day. Different classifications of the observations are 
evaluated within the regions (see Fig.  5d). The tagging 
yield ranged from 42 to 46% in the first two regions. 
However, accounting for other insects likely found 
within the defined ranges (estimated to ~ 300 counts 
per meter), the tagging yield increased to 51% and 48%, 
respectively. The misclassification between red and green 
observations is estimated to ~ 1% using the assumption 
that there should be no increased activity at the entrance 
of the other species. This implies that ~ 1% of the bees 
that were classified as red-tagged, was in reality green-
tagged, and vice versa. Far from the hives 4–6% of the 
observations were tagged, and during nighttime, no 
tagged observations were recorded, underscoring the 
high reliability of the classification between elastic and 
fluorescent observations.

Fig. 4  Statistical analysis on all insect observations. a Log-log 
histogram of the SNR values of each time–range pixel in all 
measurement files during 24 h. An extrapolation of the noise 
and the selected threshold value are indicated in dashed lines. b The 
mean and standard deviation of the background subtracted spectra 
and the backgrounds of all insect observations
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The observations and analyses presented offer detailed 
insights into the activity patterns of the two tagged spe-
cies and untagged insects.

Discussion
Common methods for insect behavior monitoring, such 
as visual observation, hive sensors, and video tracking, 
offer valuable insights but often face limitations in 
specificity, spatial range, or temporal resolution. The 

hyperspectral lidar method presented here aims to 
address these challenges by providing high-resolution 
and species-specific tracking capabilities. Here, we 
discuss the specific advantages of this lidar technique 
and areas where it complements, rather than replaces, 
existing methodologies.

We employed a novel hyperspectral lidar with the 
capability to monitor insects’ activities throughout both 
day and night along a 23  m transect, in front of their 
hives. This system detected over 17,000 tagged and 
untagged insects and provided millisecond temporal 
and centimeter spatial resolutions. Indeed, the ability 
to remotely detect small insects relies on the high 
resolution in time, range, and wavelength with lock-in 
and differentiation methods. The second diffraction 
order is usually considered undesirable but is, in our case, 
utilized to increase the reliability of detections and for 
continuous wavelength calibration. Although the frame 
rate is sufficient for distinguishing single observations, 
systems with kilohertz sample rates can determine, e.g., 
flight speed [41] and wingbeat frequency [66].

Fig. 5  Insect activity for 24 h. Green-tagged (M. bocandei), red-tagged (D. staudingeri), and untagged insect observations of the 24-h measurement 
are presented as (a) a contour plot over time of day and range. The sunrise (at 5:58), the meridian (at 12:00), and the sunset (at 18:03) are marked 
with dashed lines. b The observation density over the range in counts per meter. c The observation frequency over time of day in counts 
per minute. In (d), the percentage of green-tagged, red-tagged, and untagged insect observations are shown in intervals defined in Table II, close 
to and far from the two tagged hives and for day and nighttime

Table 2  Defined ranges and time of day for the ‘intervals’

Interval name Range (m) Time of day (HH;MM)

Near M. bocandei hive daytime 10.5–11.85 05:50–18:04

Near D. staudingeri hive daytime 15.8–17.5 05:50–18:04

Far from hives daytime 5.8–10.5,
11.85–15.8,
17.5–21

05:50–18:04

Nighttime 5.8–21 18:05–05:49
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Our methodology of powder tagging has been reported 
to have little effect on flight behavior [67] compared to 
bulkier radio transmitters [68]. The labor required for 
our approach is notably less than conventional count-
ing methods, making it a promising tool for extensive 
studies.

One constraint inherent to lidar systems is their one-
dimensional monitoring. Expanding to 2D or 3D tracking 
in future work could offer broader insights. This approach 
could be achieved by scanning or wobbling the beam 
[57, 58, 69]. Furthermore, our study’s confined transect 
(~ 20 m) restricted our observations to free-flying insects 
in proximity to the hives. Future research might benefit 
from exploring longer-range observations. This focused 
data collection along the transect could be greatly 
enriched by combining it with visual observations or 
localized hive monitoring. Such integration would offer 
insights into flight trajectories, behaviors near the hive 
entrance, and confirmation of any species identification 
made by the lidar system.

Since this study is limited in terms of duration and 
number of hives monitored, we cannot discern to what 
degree the patterns are influenced by attributes specific 
to the measuring day and these specific colonies’ sizes 
and microclimates. A more rigorous study with multiple 
tagged hives and a longer duration could be explored 
in the future. However, we resolve distinct activity 
patterns of the two endemic stingless bee species, which 
showcases the possibilities of this technology. The 
variations between the two species, with the smaller D. 
staudingeri exhibiting a more extended active day yet less 
active during the warmer hours compared to the larger 
M. bocandei, offer intriguing ecological insights. Previous 
literature has noted a heightened heat sensitivity in 
pollen-collecting stingless bees compared to their nectar-
foraging counterparts [21]. While some studies suggest 
that African endemic stingless bees demonstrate a 
preference for pollen [70], others specifically identify M. 
bocandei as primarily nectar foragers [71]. Our findings, 
which indicate greater heat resilience in M. bocandei, 
align with this latter observation. In Scotland, the larger 
bumblebees were found to be more resistant than 
honeybees to harsh, i.e., cold, weather conditions, leading 
to longer active days [72]. Although more research is 
needed to confirm our findings, our results propose that 
in the tropics the opposite could hold true, insects with 
larger body sizes could have shorter active days and more 
activity during the warmest hours.

Conclusions
Our deployment of a novel hyperspectral lidar provided 
insights into the behavior of over 17,000 tagged and 
untagged insects. Combining high temporal and 

spatial resolutions, the technology offers substantial 
improvements over conventional entomological 
methods. Notably, the unique activity patterns of the 
endemic stingless bees, D. staudingeri and M. bocandei, 
were revealed, offering ecological implications. We hope 
that the observed distinctness in the activity patterns of 
these species will aid the establishment of conservation 
strategies for stingless bees. Our methodology emerges 
as a promising tool for further ecological studies, 
increasingly relevant due to impending challenges like 
climate change and insect decline.
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