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Abstract 

Background Quantifying foraging success in space and time and among individuals is essential for answering many 
ecological questions and may guide conservation efforts. However, collecting this information is challenging for spe-
cies that forage on mobile prey and are difficult to observe visually, for example, because they forage in inaccessible 
areas or at night. In such cases, the use of tracking devices that simultaneously collect location and acceleration data 
may provide a solution if foraging success can be extracted successfully. The aim of this study was to assess how well 
searching for and ingesting prey, among other behaviours, could be distinguished from 20 Hz acceleration data col-
lected by GPS/ACC-trackers mounted on the back of Eurasian spoonbills Platalea leucorodia. Upon capturing a prey, 
spoonbills make a distinct movement with their head and back to throw the prey from the tip of the bill into the throat.

Methods We compared the behavioural classification performance of random forest models that were trained and 
tested on video-annotated acceleration data segments of different (fixed or flexible) lengths. The best-performing 
model was then applied to 4 years of data of spoonbills foraging in the Wadden Sea during the breeding season, to 
explore seasonal and annual variation in prey ingestion rates.

Results Highest classification accuracies (as indicated by the F-measure, a balanced measure of precision and 
sensitivity) of foraging behaviours were achieved by analysing short fixed-length segments (0.4–0.8 s) or “flexibly-cut” 
segments. The F-measure was very high (> 0.90) for searching, standing, sitting and flying (distinguishing active and 
passive flight), 0.73 for ingesting prey and 0.65 for walking. False positive and negative prey ingestions were equally 
likely and most often confused with searching, resulting in a close match between the predicted and observed prey 
ingestion rates. Application of the best-performing model revealed strong seasonal patterns in prey ingestion rates in 
the Wadden Sea that varied between years.

Conclusions We show that prey ingestion rates of spoonbills can be fairly accurately estimated from acceleration 
data. These results are promising for the use of spoonbills equipped with GPS/ACC-trackers as monitors of spatial and 
temporal variation in the availability of small fish and shrimp, which is key to understand the foraging and migratory 
movements of spoonbills and provides information on the quality of (coastal) wetlands.
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Background
Foraging is essential for animals to survive and success-
fully reproduce. Determining where animals forage and 
how successful they are is key to answering many ecolog-
ical questions [1]. For example, this information is crucial 
to understand habitat use [2], foraging decisions [3–5], 
movement patterns [6] and time budgets [7]. In addition, 
quantifying (individual) variation in foraging success in 
space and time and in relation to age, sex and experience 
helps explain variation in reproductive performance [8–
10] and survival and their consequences for population 
dynamics [11, 12]. Moreover, information on foraging 
habitat use and success can be used for nature conserva-
tion purposes, through identifying the importance and 
quality of foraging sites [13, 14].

While food intake rates of animals feeding on plants or 
sessile prey may be predicted from measuring the den-
sity, availability and quality of their food [15–17], this 
approach is less reliable for animals foraging on mobile 
prey. First, the distribution of mobile prey may change 
over short time scales and second, prey may behaviour-
ally respond to sampling efforts. Therefore, to get reliable 
and accurate estimates of prey intake rates for predators 
foraging on mobile prey, direct visual observations are 
preferred. However, such visual observations are chal-
lenging or even impossible when species are difficult 
to approach, forage in vast or inaccessible areas, or at 
night. In these cases, the rapid development and min-
iaturization of tracking devices may provide a solution 
[18]. Tracking devices that simultaneously collect loca-
tion and acceleration data allow the monitoring of not 
only the locations that animals are visiting, but also of 
what they are doing at these locations [19–21]. However, 
while machine learning techniques have been widely and 
successfully applied to distinguish behaviours such as 
walking, resting and flying [20], only a few studies suc-
ceeded to accurately distinguish behaviours associated 
with prey captures. In some species, the time from prey 
capture to swallowing is relatively short, allowing it to be 
detected as a whole (penguins [22, 23] and marine mam-
mals [24, 25]). In other studies, rather than the actual 
capture, behaviours following a prey capture could be 
distinguished, such as prey handling, eating or caching 
[26–28].

That only few studies succeeded in distinguishing 
behaviours related to prey captures may be partly due 
to species-specific characteristics of the foraging behav-
iour (with only some species making distinct movements 
when catching, handling or swallowing (eating) prey), but 
also on how acceleration data are collected. For example, 
in most of the above-mentioned studies, where the actual 
prey captures could be distinguished [22–25], acceler-
ometers were taped onto the head or mandibles, thereby 

picking up subtle movements of the head or mouth, with 
the specific aim to detect prey captures. These taped 
accelerometers only stayed on the animals for a few 
days, hence the obtained information is limited to forag-
ing grounds around the place where the animal can be 
recaptured to retrieve the trackers [29]. For longer term 
deployments, with the primary aim to collect long-term 
individual data on habitat use and daily and seasonal 
(migratory) movements over multiple years, trackers 
(often solar-powered) are usually attached onto a neck 
collar (terrestrial mammals [30] and some birds (geese 
and swans [31, 32]) or back-mounted harness (birds 
[33]). With such tracker placements, prey captures are 
likely harder to distinguish, while having this information 
would greatly aid the interpretation of observed move-
ment patterns, and enable individual-level quantification 
of foraging success in space and time.

A species that does make a very distinct movement 
upon capturing a prey (to swallow it) is the Eurasian 
spoonbill Platalea leucorodia  (hereafter  spoonbill). 
Spoonbills are wading birds that feed tactilely on 
small fish, shrimps and other crustaceans that live in 
the water column. They forage during both day and 
night and in waters of varying salinity, ranging from 
freshwater to marine [34]. The fact that their prey are 
mobile makes reliable sampling of prey distribution 
and availability difficult, if not impossible. Prey may 
behaviourally respond to sampling activities or attrib-
utes (e.g., nets), and their distribution and availability 
may change in relation to tide, the diurnal cycle and 
over the season. Moreover, spoonbills use vast areas 
for foraging, and visit many different wetlands during 
migration and in winter [35]. A  better understanding 
of  their migratory decisions and performance would 
require information about prey availability at all these 
wetlands, which is practically impossible to achieve 
through prey sampling. These issues could be (partly) 
solved if prey captures could be detected from tracked 
spoonbills. Spoonbills search for prey by walking 
through shallow water while making sweeping move-
ments with their hypersensitive bill through the water 
[34]. When a prey is detected, they try to capture it 
between the flattened and broadened tips of their bill. 
Sometimes a short chase is needed before the prey is 
captured (presumably when the bird feeds on a shoal 
of fast-swimming fish). When a prey is successfully 
captured between the tips of their bill, spoonbills make 
a distinct movement with their head and neck to throw 
the prey into their throat to swallow it [36].

In this study, we investigate whether searching for 
and ingesting prey by spoonbills can be accurately dis-
tinguished from other behaviours on the basis of accel-
erometer data collected by trackers (hereafter referred 
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to as GPS/ACC-trackers) mounted on the back of the 
birds. For this, we collected data on the actual behav-
iour of 5 spoonbills equipped with a GPS/ACC-tracker 
by video-recording them in a variety of natural ecolog-
ical contexts. Using these annotated data, we applied 
supervised machine learning techniques (using ran-
dom forest models) and compared classification per-
formance for nine behaviours using two segmentation 
techniques: fixed-time and flexible-time segmentation 
[27]. Flexible-time segmentation has been suggested 
to perform particularly well on distinguishing short-
lasting behaviours [27]. However, its performance may 
depend on the length of the acceleration data samples. 
For the fixed-time segmentation method, segment 
length is expected to influence classification perfor-
mance [37]: to distinguish short-lasting behaviours 
such as prey ingestions, short segment lengths of the 
same or shorter length than the natural duration of the 
behaviours are expected to perform best.

Selecting the best-performing classification model, 
we then applied it on acceleration data collected by 
the GPS/ACC-trackers of eight adult female spoonbills 
foraging in the Wadden Sea (The Netherlands) dur-
ing the breeding seasons of 2016–2019 to explore how 
prey ingestion rates vary throughout the breeding sea-
son and between years. In the Wadden Sea, the diet of 
spoonbills in terms of biomass consists mostly of juve-
nile flatfish (mainly plaice, Pleuronectes platessa), gob-
ies (Pomatoschistus spp.), three-spined sticklebacks 
(Gasterosteus aculeatus) and smelt (Osmerus eper-
lanus) [38, 39]. In terms of numbers, which is the rele-
vant measure for comparison with prey ingestion rates, 
juvenile flatfish and brown shrimp Crangon crangon 
are most abundant in the diet [38, 39]. Studies on the 
seasonal presence of plaice [40, 41] and brown shrimp 
[42, 43] show an initial increase from April to June fol-
lowed by a decrease. We explore whether this seasonal 
pattern is reflected in the prey ingestion rates of spoon-
bills foraging in the Wadden Sea. Finally, we discuss the 
implications of our results for spoonbills to be used as a 
bioindicator of (coastal) wetland habitat quality.

Methods
GPS tracking
Between 2012 and 2018, 32 adult spoonbills (21 males 
and 11 females, see Additional file  1: Table  S1) were 
caught in the breeding colony on the Dutch Wadden Sea 
barrier island Schiermonnikoog (N 53.48°, E 6.25°) and 
equipped with a UvA-BiTS tracker [44]. These track-
ers measure GPS location along with a sample of 20 Hz 
tri-axial acceleration data and allow for flexible sampling 
settings [sampling interval and in case of acceleration 
data, sampling duration (1–10 s)] which can be remotely 

adjusted via communication with radio antennas con-
nected to a computer. The collected data are stored in the 
on-board memory (4–32 MB) of the tracker and down-
loaded when the bird is in reach of the antenna network 
that was set up in the breeding colony. Accelerometers 
were calibrated to convert the three components of the 
acceleration data in g-force (1 g = 9.8 m  s−2).

All birds were caught on the nest using a leg loop. A 
nylon thread (of c. 2 mm thickness) was placed in a large 
loop around the nest bowl, which then ran through a 
small loop to a person hiding at 20–30 m from the nest. 
When the bird had resumed incubating the eggs, the 
person pulled the thread, thereby closing the large loop 
around the leg of the bird. We selected individuals for 
catching that were strongly attached to the nest (i.e., not 
flying up when approached until c. 30 m from the nest). 
In the majority of cases, these birds were in the second 
half of incubation. During catching, the eggs were tem-
porarily replaced by dummy eggs. In the few cases that 
a bird was not caught within half an hour, the catching 
attempt was aborted.

Upon capture, the bird was measured, weighed and a 
blood sample was taken for molecular sexing. The bird 
was ringed with a unique combination of colour-rings 
and a flag and a GPS/ACC-tracker was mounted on the 
back of the bird using a Teflon wing harness [33]. The 
tracker including the neoprene pad and Teflon harness 
(5 g) weighed 31 ± 12 g (mean ± sd), and the body mass 
of the caught adult females and males was 1646 ± 146 g 
and 1968 ± 162  g, respectively. The tracker contributed 
1.1–3.0% to the spoonbill’s body mass (see Additional 
file  1: Table  S1 for body mass and tracker weight per 
individual), thus not exceeding the 3% that has been sug-
gested to represent the upper limit for migratory bird 
species [45]. After handling, which took maximally half 
an hour, the birds were released immediately.

Collection and behavioural annotation of video footage
The workflow from collecting acceleration data to 
developing and testing behavioural classification mod-
els is shown in Fig. 1. First, we collected video material 
of several GPS/ACC-tracked individuals. To this aim, 
we searched for the tracked individuals at their forag-
ing grounds and in the colony in June 2013–2015 and 
August 2013–2014. Whenever a bird was encountered, 
the measurement scheme of the tracker was temporar-
ily adjusted to the maximum sampling duration of 10 s 
of acceleration data and a sampling interval of 10  s, 
implying (nearly) continuous collection of acceleration 
data. We filmed the birds with a camera mounted on a 
20–60 × spotting telescope.

We designed an ethogram of 13 different behav-
iours (Additional file  1: Table  S2) and assigned these 
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to acceleration data which were synchronised with the 
collected video material (see Additional file  2: Video 
S1). The video material contained very few data on 
passive (soaring/gliding) flight, as this type of flight 
mainly occurs during migration. Therefore, we graphi-
cally annotated additional data on passive (soaring or 
gliding)  flight by examining plots of acceleration data 
samples collected during migratory flights of three 
individuals, during which spoonbills use both active 
(flapping) and passive flight. These two types of flight 
give very different acceleration patterns (Additional 
file 1: Figure S1, [46]).

In total, we annotated 1.6  h of video material of 5 
birds. The total duration of video-annotated data of the 
different behaviours, as well as of the graphically anno-
tated passive flight data, is shown in Additional file  1: 
Table  S2. The duration during which behaviours were 
continuously expressed is shown in Additional file  1: 
Figure S2, as an upper limit to the desired length of the 
segments on which to apply the behavioural classifica-
tion algorithm (i.e., segments should not be longer than 
the mean duration of a behaviour, otherwise segments 
are likely to consist of a mixture of different behaviours; 
for more details on the segmentation, see below). Fig-
ure  2 shows representative acceleration data patterns 
for the most relevant behaviours.

Segmentation, summary statistics and behaviour 
assignment
All calculations and analyses were performed in pro-
gram R (version 3.6.0 [47]). We calculated summary 
statistics to characterize the acceleration data within 
segments of acceleration data and used them as pre-
dictor variables for machine learning. These segments 
can be of fixed length (‘fixed segmentation’) or of vari-
able lengths (‘flexible segmentation’) for which an auto-
mated procedure is used to cut the acceleration data 
sample into smaller segments based on changes in the 

acceleration data signal. The idea of the flexible seg-
mentation method is that this would create segments 
that are likely to be cut at the point where a change in 
behaviour occurs, as reflected by a change in the accel-
eration data signal, and hence that flexibly cut seg-
ments (of variable length) are more likely to consist of 
a single behaviour than fixed-length segments. Indeed, 
the flexible segmentation method has previously been 
shown to result in higher accuracy of behavioural clas-
sification compared to the fixed segmentation method 
[27]. However, the sampling duration of acceleration 
data analysed in [27] was 10 s, while the trackers in our 
study collect much shorter acceleration data samples 
(of 0.8 or 1.6 s, see above). With such short samples, the 
flexible segmentation method may perform less well. 
Therefore, we compared the classification performance 
of the fixed versus flexible segmentation method using 
a sampling duration of maximally 1.6 s. These samples 
were then cut into segments of fixed length (of 0.2, 0.4, 
0.8, or 1.6  s) or of variable lengths (between 0.15 and 
1.6 s), for which we used a change-point model frame-
work that cuts the samples into smaller segments based 
on changes in the x-signal (as in [27]), using the pro-
cessStream function of the R package cpm [48]. We 
selected the GLR (Generalized Linear Ratio) test statis-
tic to detect changes in both the mean and variance of 
the x-signal. The sensitivity of the change-point model 
to changes in the x-signal is determined by the  ARL0 
(Average Run Length) parameter, which reflects the 
average number of observations before a false posi-
tive is detected. When  ARL0 increases, the probability 
of detecting a change-point decreases, resulting in on 
average longer segments. We compared model perfor-
mance for different values of  ARL0 (100, 500, 5000 and 
50,000). To each segment, we assigned the behaviour 
that was expressed during most of that segment. Addi-
tional file 1: Figure S3 and S4 show the distribution of 
segment lengths for the different  ARL0 values and per 
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Fig. 1 Machine learning workflow for random forest classification of observed behaviours, adjusted after [27] and [60]
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assigned behaviour when the flexible segmentation 
method is applied to the annotated data set.

Per segment, the following summary statistics were 
calculated for each of the three axes (x, y and z): mean, 
maximum value, minimum value, skewness, kurtosis, 
dominant power spectrum, frequency at the dominant 
power spectrum (Hz), trend, noise and mean dynamic 
body acceleration. In addition, overall dynamic body 
acceleration (ODBA) was calculated as the sum of the 
mean dynamic body acceleration over each axis [49]. 
We also used GPS speed as a predictor variable, as 
measured by the GPS device along with the accelera-
tion sample. Skewness and kurtosis reflect the extent to 
which the distribution of values is left- or right-skewed 
and the height of the distribution and were calculated 
using the R package moments [50].

Machine learning classification algorithm
We used random forest (RF) models to predict behaviour 
from acceleration data, as these models have been shown 
to perform consistently well [6, 27, 51, 52]. RF models 
were run using the R package randomForest [53]. Using 
a resampling procedure, we randomly split the annotated 
data into a train and test data set: 70% of the data were 
used to train the model. Its performance in correctly 
predicting the different behaviours was then tested on 
the remaining 30% of the data. To derive mean and 95% 
confidence intervals for the classification performance 

measures of the model (see below), this procedure was 
repeated 100 times.

To estimate the classification performance of the RF 
model per behavioural class, each classified segment was 
labelled as either positive (classified as this behaviour) or 
negative (classified as a different behaviour) and as either 
correctly (true) or incorrectly (false) classified, resulting 
in four categories: true positive (TP), true negative (TN), 
false positive (FP) and false negative (FN). These statistics 
were then used to calculate precision ( TP

TP+FP
 ), reflecting 

the proportion of positive classifications that were cor-
rect, and sensitivity ( TP

TP+FN
 ), reflecting the probability 

that a given behavior is classified as such. In addition, we 
calculated the F-measure 

(

2TP

2TP+FP+FN

)

 which is the har-
monic mean of precision and sensitivity [54].

Using segments of 0.4 s, we first explored whether clas-
sification performance (F-measure) was improved by 
down- versus up-sampling the amount of annotated data 
(by deleting versus repeating part of the segments) of 
behaviours that occurred relatively often (stand, search) 
versus infrequently (drink, walk, fly-passive, handle, 
ingest) to achieve a more balanced data set to train the 
RF models. We also explored whether classification per-
formance improved when using only the most impor-
tant predictor variables in the RF models instead of all 
predictor variables. These procedures hardly improved 
the classification performance (F-measures) of the dif-
ferent behaviours (Additional file 1: Figure S5). However, 

Fig. 2 Foraging spoonbill equipped with a GPS/ACC tracker along with representative acceleration data patterns. The arrows indicate the three 
directions in which acceleration is measured by the tracker. On the right panel, representative acceleration data patterns (at 20 Hz) for the most 
relevant behavioural classes, with the bottom right panel representing foraging behaviour, including both searching for and ingesting a prey (the 
shaded area). Photo credits: Vasco Valadares
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as down-sampling the amount of annotated standing 
behaviour did not decrease model performance, but sig-
nificantly decreased computational time, we neverthe-
less down-sampled the number of annotated acceleration 
segments in which the most often expressed behaviour 
was “stand” by a factor 4. We then compared the classi-
fication performance for the different behaviours using 
either the fixed-time or the flexible-time approach, with 
different segment lengths and  ARL0-values, respectively.

Application: seasonal and annual variation in prey 
ingestion rates
We selected the segmentation method (with associated 
segment length or  ARL0 value) that resulted in the high-
est F-measures of the RF-model, in particular for behav-
iours associated with foraging (searching, handling and 
ingesting prey). We applied this method to acceleration 
data collected by 8 adult spoonbills breeding on Schier-
monnikoog in the period 2016–2019 (Additional file  1: 
Table S3), with the aim to investigate whether we could 
detect seasonal and annual variation in prey ingestion 
rates from acceleration data. During this period, all track-
ers were set to collect a GPS location along with 1.6 s of 
acceleration data every 10 min. To reduce variation due 
to habitat-specific prey composition and densities, and 
because most foraging (both in the annotated and appli-
cation data set) occurred in the Wadden Sea, we only 
used data from the Wadden Sea for this proof-of-concept 
analysis. To select data from the Wadden Sea, we overlaid 
the GPS positions collected together with the accelera-
tion data samples with the tidal basin map of Baptist et al. 
[55]. In addition, to reduce variation due to sex-specific 
habitat or prey preferences, with females foraging almost 
exclusively in the Wadden Sea, while males spend about 
50% of their foraging time in freshwater habitats (Lok 
et al. in prep), we only selected data from females.

From the classified data, we calculated prey inges-
tion rate  (min−1) per bird per date by dividing the time 
spent ingesting prey (sum of duration of segments 
classified as “ingest prey”) by the time spent foraging 
(i.e., the sum of the duration of segments classified as 
“search”, “handle” or “ingest prey”). This proportion 
was then divided by the average duration of a prey 
ingestion (0.8 s, Additional file 1: Figure S2) and mul-
tiplied by 60 s to get the number of prey ingested per 
minute.

To model prey ingestion rates, we used linear mixed 
effects models [56] using R package nlme [57]. As data 
were positively skewed, prey ingestion rates were log-
transformed. To investigate statistical support for vari-
ation in prey ingestion rates throughout the breeding 
season, we compared models with and without a linear 

or quadratic effect of day of the year. We also explored 
whether there was support for annual variation in prey 
ingestion rates, and for differences in seasonal patterns 
between years by considering models with year as cate-
gorical variable and models with an interaction between 
year and (the linear or quadratic effect of ) day of year. We 
accounted for pseudoreplication and individual variation 
in prey ingestion rates by modelling random individual 
variation around the intercept and (where applicable) 
slope parameters describing the seasonal pattern. In the 
statistical analyses, we only used prey ingestion rates that 
were calculated from at least 20  s of acceleration data 
classified as foraging per individual per day. Candidate 
models were run using maximum likelihood estimation 
and their relative support was evaluated based on the 
Akaike Information Criterion, corrected for small sam-
ple size  (AICc [58, 59]). We selected the most parsimoni-
ous model as the best description of the data, being the 
model with the fewest parameters among the supported 
models (with ΔAICc < 2).

The R code to run the analyses has been made available 
at Github.

Results
Classification performance in relation to segmentation 
method and segment length
Irrespective of segmentation method or segment length, 
sensitivity and precision were very high (0.94–1.00) for 
inactive behaviours (sitting and standing) and active 
(flapping) and passive (soaring/gliding) flight (Fig. 3). In 
contrast, sensitivity was very low for prey handling (< 0.1) 
and drinking (< 0.2). Precision, and hence the F-measure, 
could not be calculated for these behaviours, as they were 
not predicted in the test data set in any simulation. Sen-
sitivity and precision for walking, searching and ingest-
ing prey varied between 0.5 and 0.9 and depended on 
segment length (fixed-time segmentation) or  ARL0 value 
(flexible time-segmentation, Fig. 3).

For walking, both sensitivity and precision, and there-
fore, the F-measure, initially increased with segment 
length to stabilize at segment lengths of 0.6–2.0  s. For 
searching, sensitivity slightly decreased with increasing 
segment length, to increase again at 2.0 s, while precision 
was highest at intermediate segment lengths (0.4–1.0 s). 
As a result, the F-measure for searching was highest at 
segment lengths of 0.4–0.6 s (mean: 0.91, 95% CI: 0.90–
0.92). For ingesting prey, sensitivity initially increased 
with segment length to become more or less stable 
between 0.4 and 1.0 s to rapidly decrease when segments 
were > 1.0 s, while precision was highest at 0.4 s and then 
gradually decreased with increasing segment length. As 
a result, the F-measure for ingesting prey was highest at 
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0.4  s (0.73, 0.70–0.76). Using the flexible segmentation 
method, sensitivity and precision decreased with increas-
ing  ARL0 value for ingesting prey and, to a lesser extent, 
for searching. In contrast, precision and the F-measure 
for walking were slightly higher (though CRI’s overlap) at 
higher  ARL0 values. The highest F-measures for search-
ing (0.91, 0.90–0.92) and ingesting prey (0.73, 0.70–0.77) 
were obtained with  ARL0 = 100 (Fig.  3). The amount of 
annotated data of drinking and handling prey was too 
small to draw robust conclusions.

Ingesting prey was most often confused with search-
ing, as was the case for walking, with false positive and 
false negative confusions with searching occurring simi-
larly often (Additional file  1: Figure S6). Consequently, 

the estimated prey ingestion rates closely matched the 
observed prey ingestion rates (Table 1).

Application of the best‑performing model to estimate prey 
ingestion rates
The F-measures for searching and ingesting prey were 
highest using either the fixed-time segmentation method 
with a segment length of 0.4  s or the flexible-time seg-
mentation method with an  ARL0-value of 100  (Fig.  3). 
We applied both methods to analyse the acceleration data 
from 8 adult female spoonbills in the Wadden Sea. Here, 
we show the results from the fixed segmentation method 
with a segment length of 0.4 s. Results from the flexible-
time segmentation model with  ARL0 = 100 can be found 
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in the supplementary material (Additional file  1: Figure 
S7).

The distribution of the locations in the Wadden Sea 
where the birds were classified to have been foraging are 
shown in Fig.  4. The best-supported model describing 

seasonal and annual variation in prey ingestion rates at 
these locations included a statistical interaction between 
season (described by a quadratic function of day of the 
year) and year (with ΔAICc = 28.35 compared to the sec-
ond model which included additive effects of season and 
year, Table  2). Prey ingestion rates more than doubled 
from early April to late June to decrease again toward the 
end of September (Fig. 5a). The seasonal pattern differed 
between years, with prey ingestion rates peaking about 
2 weeks later (around 5 July) in 2016 compared to 2017–
2019 (around 21 June, Fig. 5b). Moreover, prey ingestion 
rates at the seasonal peak were about 5% lower in 2016–
2017 compared to 2018–2019.  

With the flexible segmentation method, similar sea-
sonal patterns were found, but prey ingestion rates were 
estimated consistently (on average 33%) lower than with 
the fixed segmentation method (Additional file 1: Figure 
S7).

Discussion
The aim of this study was to assess how well searching 
for and ingesting prey, among other behaviours, could be 
distinguished from acceleration data collected by track-
ing devices permanently mounted on the back of Eura-
sian spoonbills, to estimate prey ingestion rates. We show 
that ingesting prey could be fairly accurately (F-measure: 
0.73) classified from acceleration data, using either short 
fixed-time (of 0.4–0.8  s) or flexible-time segmenta-
tion. Most longer-lasting behaviours, including resting, 

Table 1 Deviation of predicted prey ingestion rates from 
the observed using the different segmentation methods and 
different segment lengths and  ARL0-values. In most cases, the 
confidence intervals (estimated from 100 simulations) include 
1.0 (no deviation), indicating that both methods predict prey 
ingestion rates that are very close to the true value

Segmentation 
method

Parameter value Deviation of predicted from 
observed prey ingestion 
rate

FIXED Segment length (s)

0.2 0.87 (0.81–0.91)

0.4 0.97 (0.90–1.04)

0.6 1.02 (0.96–1.10)

0.8 1.08 (0.99–1.17)

1.0 1.12 (1.03–1.20)

1.6 0.89 (0.74–1.10)

2.0 0.37 (0.23–0.58)

FLEXIBLE ARL0 value

100 1.03 (0.95–1.13)

500 1.12 (1.00–1.22)

5000 1.09 (0.97–1.19)

50,000 1.06 (0.91–1.18)
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Fig. 4 Spatial distribution of foraging locations of adult female spoonbills in the Wadden Sea south of their breeding colonies on Schiermonnikoog. 
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rounded to the third decimal. To improve readability, the density, reflecting the total number of 0.4 s segments of acceleration data estimated as 
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flying and searching (for food), were accurately classified 
(F-measures: 0.85–0.94) over a large range of fixed-time 
segment lengths as well as with the flexible-time segmen-
tation. Application of the RF model on 0.4 s segments of 
acceleration data collected between 2016 and 2019 on 
8 female adult spoonbills foraging in the Wadden Sea 
during the breeding season revealed that the classifica-
tion accuracy of relevant foraging behaviours, including 
ingesting prey, was sufficiently high to detect seasonal 
and annual variation in prey ingestion rates. While sev-
eral previous studies on diving birds and mammals 
showed that prey ingestions could be distinguished from 
data collected by accelerometers mounted on their head 
or mandibles [22–25], this study is among the first to 
quantify prey ingestion rates for a long-distance migra-
tory bird equipped with a back-mounted GPS/ACC-
tracker. Although the classification accuracy of ingesting 
prey in our study was somewhat lower than in the stud-
ies on diving animals (with reported sensitivity, preci-
sion, specificity and/or overall accuracy between 0.81 
and 0.91), the estimated prey ingestion rates in our study 
closely matched reality (Table  1). As the solar-powered 
trackers stay on the birds for the rest of their life and usu-
ally function for several years (up to 8 years, pers. obs.), 
this allows for long-term monitoring of prey ingestion 
rates at high resolution across time and space.

Methodological considerations
Handling prey was very poorly classified, and in most 
cases confused with ingesting prey (Additional file  1: 
Figure S6). This could be explained by the fact that the 
few cases of handling in the annotated data set (40  s of 
handling compared to 471 s of ingesting prey, Additional 
file  1: Table  S2) often concerned unsuccessful attempts 
to throw the prey from the tip of the bill into the throat, 
which gives a very similar pattern in the acceleration data 
as when this throwing movement was successful (i.e., 
defined as ingesting prey). As handling occurred rarely, 
it only had a minor effect on the precision of classifying 
ingesting prey. Besides handling, drinking was poorly 
classified, presumably because it occurred only rarely in 
the annotated data set (Additional file 1: Table S2). Drink-
ing was most often confused with standing (Additional 
file 1: Figure S6), which makes sense because spoonbills 
stand still when they drink. Combined with the fact that 
drinking is a rarely occurring behaviour of spoonbills in 
general, we suggest to pool it with standing.

The strong decrease in sensitivity of ingesting prey at 
fixed-time segments of > 1.0 s (Fig. 3) could be explained 
by the fact that these segments are longer than the 

Table 2 Model selection of seasonal and annual variation in 
prey ingestion rates, estimated by the RF model applied to 0.4 s 
segments of 20 Hz acceleration data

Season is modelled as a quadratic effect of day of the year (yday): 
β0 + β1·yday + β2·yday2. For the model season * year, the three β-parameters 
are estimated separately for each year. All models include a random intercept 
(random variation around β0), and for the models with seasonal effects also 
random slopes (random variation around β1 and β2), with individual as random 
effect

df ΔAICc Akaike weight

season * year 19 0 1.00

season + year 13 28.35 0.00

season 10 53.84 0.00

year 6 1191.11 0.00

– 3 1206.01 0.00
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Fig. 5 Seasonal pattern and annual variation in prey ingestion 
rates of spoonbills foraging in the Wadden Sea. Results are based 
on 8 adult females that were tracked during the period 2016–2019 
(for more details on the available data, see Table S3). The trackers 
collected 1.6 s acceleration data samples along with GPS coordinates 
at 10 min intervals. For training and applying the RF model, the data 
were cut into 0.4 s segments. a The line reflects the population-level 
estimates from the mixed-effect model fitting a quadratic function 
of day of the year while accounting for random individual variation 
in the intercept and linear and quadratic effect of day of the year 
(based on the  3rd ranked model “season” in Table 2). b Means and 
estimated seasonal trends are plotted separately for each year (based 
on the best-supported model “season * year” in Table 2). Means and 
95% confidence intervals were calculated from the estimates of 
prey ingestion rates (i.e., proportion of foraging time spent ingesting 
prey) per bird per year per day of the year on the log scale and then 
back-transformed. For readability, 95% confidence intervals are only 
shown in panel a 
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average duration of a prey ingestion (0.8  s, Additional 
file 1: Figure S2), and, therefore, often consist of a mix-
ture of different behaviours, thereby giving a less distinct 
“prey ingestion” signal. However, an alternative expla-
nation could be that—for the same reason—the sample 
size of annotated segments, where ingesting prey was 
the most occurring behaviour decreased relatively faster 
compared to other behaviours with increasing segment 
length. To remove this potential statistical artifact, we 
redid the analysis with the sample size that was avail-
able per behaviour when the data were split into 2.0  s 
segments (i.e. the smallest sample size)  for all segment 
lengths, which produced similar results (Additional file 1: 
Figure S8).

When applied to the data of foraging adult female 
spoonbills in the Wadden Sea, the fixed-time segmenta-
tion method estimated consistently higher prey ingestion 
rates than the flexible-time segmentation method (Addi-
tional file  1: Figure S7). This seemingly contradicts the 
results from the annotated data set, where the two meth-
ods estimated similar prey ingestion rates that were close 
to the observed (Table 1). As the application data set is 
much larger (169 h) than the annotated data set (1.6 h), 
we consider the results from the application data set 
more reliable. The difference in estimated prey ingestion 
rates by the two methods was mainly driven by a differ-
ence in the estimated proportion of time spent ingesting 
prey rather than the time spent searching (Additional 
file 1: Figure S9). One possible explanation for this is that 
the change-point model used in the flexible segmentation 
method misses prey ingestions that are detected when 
the sample is cut into small fixed-time segments, and, 
therefore, underestimates the time spent ingesting prey. 
On the other hand, the fixed-time segmentation may 
overestimate the time spent ingesting prey as parts of one 
prey ingestion may end up in different segments, with 
potentially only a small part of a prey ingestion needed 
to classify this segment as ingesting prey. For the transla-
tion into energy intake rates (see below), it is important 
to know which method most closely resembles the actual 
prey ingestion rates, but for quantifying (relative) dif-
ferences between individuals or in time and space, both 
methods are suitable, as indicated by the similar  sea-
sonal pattern detected with both methods. The overall 
estimated time budgets by the two methods is shown in 
Additional file 1: Figure S10.

In our study, we used a sampling frequency of 20 Hz, 
because this was the frequency at which the accelera-
tion data of our tagged spoonbills were collected and 
we expected that such a high frequency was needed to 
achieve the highest classification performance of short-
lasting behaviours such as ingesting prey. However, 
when the primary goal is not to estimate prey ingestion 

rates but to distinguish broader behavioural categories, 
sampling frequency may be reduced to save memory 
and battery power (to transmit the data), as other stud-
ies showed that a variety of behaviours can already be 
accurately classified at sampling frequencies of 5  Hz 
[60]. Indeed, down-sampling from 20 to 2 Hz (to still be 
able to calculate and use standard deviation as a predic-
tor variable with a segment length of 0.8 s) revealed that 
inactive behaviours (stand, sit) and some active behav-
iours (fly-active, fly-passive and search) are already well-
distinguished at the very low sampling frequency of 2 Hz 
(F-measures ≥ 0.82, Additional file  1: Figure S11). In 
contrast, the F-measure for walking and ingesting prey 
strongly increased with sampling frequency, suggesting 
that classification performance may be improved when 
using sampling frequencies > 20 Hz (Additional file 1: Fig-
ure S11). When pooling the behaviours walking, search-
ing, handling, drinking and ingesting prey into a single 
category (“active on the ground”), the pooled behavioural 
categories (resting, active on the ground, active flight and 
passive flight) all have F-measures ≥ 0.90, even at 2 Hz.

Biological considerations
The estimated prey ingestion rates of 8 adult 
female  spoonbills foraging in the Wadden Sea initially 
increased from April onward to reach a maximum in 
June, after which they gradually decreased until Sep-
tember when the birds departed on autumn migration 
(Fig.  5). This seasonal pattern qualitatively coincides 
with published data on the seasonal presence of sev-
eral important prey species of spoonbills in the Dutch 
Wadden Sea [38], including juvenile flatfish [40, 61] and 
brown shrimp [42, 43]. This suggests that the estimated 
prey ingestion rates are indicative of prey densities, with 
the initial increase likely driven by settlement of juvenile 
flatfish and the spawning of brown shrimp in the Wadden 
Sea. The subsequent decrease in prey ingestion rates may 
be caused by a decrease in prey densities due to preda-
tion and other sources of mortality, and of growing prey 
moving to deeper waters [62].

Prey ingestion rates reflect the number of prey ingested 
per unit time. To make the translation from prey inges-
tion to energy intake rate, (1) estimated prey ingestion 
rates should reflect actual prey ingestion rates and (2) 
additional information is required on prey sizes, spe-
cies composition and associated energy content and 
how these change throughout the breeding season. Such 
information could, for example, be obtained from diet 
analysis of droppings and/or regurgitates throughout 
the breeding season to estimate changes in the propor-
tion of different prey species and their size distribution 
(see [38]). Nonetheless, the period with the highest prey 
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ingestion rates closely matches with the period that most 
spoonbills on Schiermonnikoog have chicks in the nest, 
as the average hatch date is 11 May (measured during 
2006–2009, [63]) and chicks fully depend on their par-
ents for food during the following 6–8 weeks [34].

Our study focussed on the eastern Dutch Wadden Sea, 
where spoonbills mostly forage on small fish (mainly 
bottom-dwelling juvenile flatfish and gobies) and shrimp, 
which they search for by slowly wading through the water 
while sweeping their bill from side to side and, upon cap-
ture, usually ingest in a smooth continuous movement 
without involving any distinct handling (Additional file 2: 
Video S1). In other habitats, however, spoonbills may for-
age on different prey types and sizes which may require 
slightly different foraging techniques. For example, to 
catch pelagic fish, spoonbills have been observed to run 
through the water [36]. Moreover, handling time as well 
as the movements made during handling vary according 
to prey type and size, with larger prey generally involving 
longer handling to position the prey well between the bill 
tips, which usually happens underwater, and to transport 
the prey from the bill tips to the throat [36]. Therefore, 
additional video-annotated acceleration data on spoon-
bills foraging in different habitats and on different prey 
types and sizes is needed to verify the accuracy of prey 
ingestion rates across foraging habitats and to investigate 
whether handling and ingesting different prey types and 
sizes can be distinguished from accelerometer data [64, 
65], potentially requiring sampling frequencies > 20  Hz, 
with the ultimate aim to be able to translate prey ingestion 
rates into energy intake rates throughout the annual cycle.

Conclusions
Our study showed that prey ingestion rates of indi-
vidual spoonbills can be estimated from accelerometers 
mounted on the back of the birds. When combined with 
information on diet composition in terms of prey species 
and sizes (e.g., through sampling diets or further refine-
ment of acceleration data analysis), the translation to 
energy intake rates can be made. This provides exciting 
opportunities to investigate the ecological consequences 
of temporal and spatial variation in energy intake rates, 
both at the individual and population level. At the indi-
vidual level, it allows us to investigate how foraging suc-
cess improves with age and how foraging and migratory 
decisions and (ultimately) fitness are influenced by the 
energy intake rates individuals experience throughout the 
annual cycle. At the population level, the possibility to 
quantify temporal and spatial variation in energy intake 
rates throughout the annual cycle will help us to better 
understand the seasonal timing of events (e.g., breeding, 
migration) and to explain temporal and spatial variation 

in reproductive output and survival, and hence, popula-
tion dynamics. Moreover, it allows GPS/ACC-tracked 
spoonbills to be used as an indicator of the availability of 
small fish and shrimp, and with that, as a bioindicator of 
the habitat quality of (coastal) wetlands.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40317- 022- 00315-w.

Additional file 1: Figure S1. To improve the classification of passive (soar-
ing/gliding) flight, we graphically inspected the acceleration data during 
autumn migration flights of three individuals (6283, 6287 and 6291). Here, 
the migratory flight of spoonbill 6291 on 25 September 2016, crossing 
Brittany (between the red bars) and then following the Atlantic coast of 
France (left panel), and the associated acceleration segments during the 
crossing of Brittany (right panel) are plotted. The light blue dots on the 
itinerary reflect the positions during which the bird performed passive 
flight based on visual inspection of the plotted acceleration segments 
on the right. We only selected samples that consisted entirely of passive 
flight, which are outlined in bold in the right panel. Figure S2. Duration 
of behaviours expressed during continuous sampling bouts of 10 s, which 
is a subset of all annotated data as shown in Table S2 for (a) all unique 
behaviours as distinguished during the video annotation and (b) pooled 
behaviours as described in Table S2. Sample sizes indicated on top reflect 
the number of times a behaviour was expressed for a certain amount of 
time, summed over the five observed birds. Figure S3. Distribution of seg-
ment lengths resulting from applying the flexible segmentation method 
to the annotated data set with different values for the  ARL0 parameter. 
Prior to applying the flexible segmentation method, the annotated data 
set was cut into samples of 1.6 s. The minimum number of measurements 
in a segment was set at 3 (i.e., 0.15 s for 20 Hz data). Figure S4. Distribu-
tion of segment lengths per assigned behaviour (i.e., the behaviour 
occurring during most of that segment) resulting from applying the 
flexible segmentation method to the annotated data set with  ARL0 = 100. 
Prior to applying the flexible segmentation method, the annotated data 
set was cut into samples of 1.6 s. The minimum number of measurements 
in a segment was set at 3 (i.e., 0.15 s for 20 Hz data). Figure S5. Explorative 
analysis of the effects of reducing the number of predictor variables and 
of down- and up-sampling the amount of annotated data used to train 
the random forest model for certain behaviours that were over- versus 
underrepresented in the data (search and stand versus drink, handle, 
walk and fly-passive). Down-sampling was done on the entire data set 
(to maintain the 70% train and 30% test data set), while up-sampling was 
only performed on the training data set (as identical (copied) segments 
would otherwise appear in the training and testing data set). The full pre-
dictor set contains 32 predictor variables, whereas the reduced predictor 
set uses only the predictor variables that were estimated to result in > 20% 
decrease in overall accuracy when removed from the model, as calculated 
by the function importance of the randomForest R-package. Figure S6. 
Proportion of observed behaviours classified as a certain behaviour (top 
row) and the proportion of predicted behaviours that were actually a 
certain observed behaviour (bottom row). Figure S7. Seasonal variation 
in prey ingestion rates of adult female spoonbills foraging in the Wadden 
Sea, as estimated by the fixed segmentation method with segments of 
0.4 s (in blue) and the flexible segmentation method using  ARL0 = 100 
(in orange). Although 95% confidence intervals are mostly overlapping, 
the flexible segmentation method estimates consistently—on average 
33%—lower prey ingestion rates than the fixed segmentation method. 
Figure S8. Patterns of sensitivity, precision and F-measure when reducing 
the number of segments to the number of 2.0 s segments available for 
each behaviour (i.e. the smallest sample size). By doing so, we remove the 
potential effect of smaller samples sizes at longer segment lengths on 
classification performance. While this reduced the sensitivity and precision 
of particularly ingesting prey, the patterns in relation to segment length 
remained similar to those reported in Fig. 3 of the main paper. Figure 

https://doi.org/10.1186/s40317-022-00315-w
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S9. Estimated percentage of time spent searching and ingesting prey by 
adult female spoonbills, overall (left panels) and when in the Wadden Sea 
(right panels), and the resulting prey ingestion rates when using the fixed 
segmentation method with segments of 0.4 s (in blue) and the flexible 
segmentation method using  ARL0 = 100 (in orange). From these graphs, 
it becomes clear that the lower estimated prey ingestion rates by the 
flexible segmentation method are mainly driven by the lower estimated 
proportion of time spent ingesting prey. Another remarkable difference 
is that the flexible segmentation method estimates a higher propor-
tion of searching than the fixed segmentation method, but only early in 
the breeding season (i.e. in the months April–May) when the birds are 
attached to the nest for a considerable part of their time. This suggests 
that the flexible segmentation method performs worse in distinguishing 
incubating (sitting on the nest) from searching than the fixed segmenta-
tion method (see also Figure S10) and may as such overestimate the 
proportion of time spent searching, resulting in an underestimation of 
prey ingestion rates. Figure S10. Proportion of time performing different 
behaviours throughout the season. Adult females are known to spent 
about 50% of their time sitting on the nest during the incubation and 
early chick rearing phase (April–June). This graph thus shows that sitting is 
rather poorly distinguished from standing, as the birds were estimated to 
be sitting maximally 10% of the time. It is thus advised to pool sitting and 
standing into a single “inactive” category and use additional information to 
determine whether the bird was incubating (e.g., using the location of the 
nest). Figure S11. Classification performance as a function of acceleration 
sampling frequency (number of acceleration measurements per second) 
using a fixed segment length of 0.8 s. Segments of 0.8 s were used to 
still have two measurements in the sample with a sampling frequency 
of 2 Hz (which is needed to estimate ODBA, an important predictor 
variable). Table S1. Information on captured and tracked adult Eurasian 
spoonbills in the colony on Schiermonnikoog. Note that one individual 
(with colourcode LaG/RBYf ) was caught three times (in different years) 
to replace its malfunctioning tracker. Table S2. Amount of annotated 
acceleration data (in seconds) per behavioural class recorded per bird 
(with the sex indicated in brackets) and in total. Note that for 6283, 6287 
and 6291, passive flight data were graphically validated (based on visual 
inspection of acceleration graphs) instead of based on visual observation 
of the bird (see Fig. S1). Foraging behaviour was video-recorded for three 
birds at three different sites: 760 in the Wadden Sea (marine, N53.477° 
E6.284°), 763 in the Lauwersmeer (freshwater, N53.358° E6.256°) and 1608 
in the Bantpolder (freshwater, N53.405° E6.151°). Table S3. Number of 
days per bird per month included in the analysis (i.e., with at least 20 s of 
acceleration data classified as foraging in the Wadden Sea) of seasonal 
variation in prey ingestion rates of adult female spoonbills foraging in the 
Wadden Sea. 

Additional file 2: Video S1. Short video of bird 760 searching for and 
ingesting prey along with the associated acceleration data.
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