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METHODOLOGY

Very small collars: an evaluation of telemetry 
location estimators for small mammals
Grace F. Hummell1, Andrew Y. Li2 and Jennifer M. Mullinax1* 

Abstract 

Background: Fine-scale tracking of animals such as Peromyscus spp. is still done with micro-very high frequency 
collars due to the animal’s small size and habitat usage. In most cases, tracking micro-very high frequency collars 
requires manual telemetry, yet throughout the literature, there is little reporting of individual telemetry methods or 
error reporting for small mammal spatial analyses. Unfortunately, there is even less documentation and consensus 
on the best programs used to calculate fine-scale animal locations from compass azimuths. In this study, we present 
a strategy for collecting fine-scale spatial data on Peromyscus spp. as a model species for micro-very high frequency 
collars and assess multiple programmatic options and issues when calculating telemetry locations.

Results: Mice were trapped from April to October 2018–2019 with Sherman traps in Howard County, Maryland, USA. 
Collars were placed on 61 mice, of which 31 were included in the analyses. We compared the two most cited location 
estimator programs in the literature, location of a signal software and Locate III, as well as the Sigloc package in pro-
gram R. To assess the programmatic estimates of coordinates at a fine scale and examine programmatic impacts on 
different analyses, we created and compared minimum convex polygon and kernel density estimator home ranges 
from locations produced by each program. We found that 95% minimum convex polygon home range size signifi-
cantly differed across all programs. However, we found more similarities in estimates across calculations of core home 
ranges. Kernel density estimator home ranges had similar patterns as the minimum convex polygon home ranges 
with significant differences in home range size for 95% and 50% contours. These differences likely resulted from differ-
ent inclusion requirements of bearings for each program.

Conclusions: This study highlights how different location estimator programs could change the results of a small 
mammal study and emphasizes the need to calculate telemetry error and meticulously document the specific inputs 
and settings of the location estimator.

Keywords: Home range, LOAS, Locate III, Location estimators, Peromyscus leucopus, Radio collar, Sigloc, Small 
mammal, Telemetry, Triangulation
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Background
Analyses of wildlife home range patterns, movement 
patterns, and habitat use can address many different 
research questions and include analyses addressing basic 
animal ecology questions, conservation driven questions, 

or furthering the understanding of zoonotic disease ecol-
ogy. These types of spatial analyses have become a large 
component of wildlife research because of the analyti-
cal ability to robustly address specific biological ques-
tions. Yet, the technology to track very small mammals 
has lagged, especially in urban and suburban areas. 
Small mammal studies are showing that past rudimen-
tary methods of assessing habitat use were not accurate 
and better habitat analyses are needed for reintroduc-
tions and habitat management of critically threatened 
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species [1, 2]. Additionally, small mammals play a major 
role in zoonotic disease ecology. For example, Lyme dis-
ease (caused by the etiological agent Borrelia burgdorferi) 
is the most common vector-borne disease and the sixth 
most common infectious disease in the United States [3]. 
White-footed mice (Peromyscus leucopus) are the main 
reservoir host for B. burgdorferi in the eastern United 
States [4]. To reduce the risk of tick-borne diseases, inte-
grated pest management (IPM) studies are now focusing 
on host species ecology, and a recent study found that 
host species in suburban and urban environments have 
a great impact on tick density, infection prevalence, and 
connectivity of tick populations [5]. So, to manage the 
risk of tick-borne diseases in more urban areas, there 
is a need to explore the fine-scale movements of white-
footed mice as they relate to areas of high human use or 
baited tick treatment devices [6].

Generally, the two common tracking technologies to 
gather needed terrestrial locational data are very high 
frequency (VHF) and Global Positioning System (GPS) 
trackers [7–14]. The newer, more advanced GPS track-
ers are efficient and accurate for medium and large 
mammals, and there have been some recent studies 
using smaller GPS trackers for smaller medium-sized 
mammals, like feral cats or hares [15–17]. As technol-
ogy increases, we expect to see future increasing effec-
tiveness, but GPS technology for very small mammals is 
still significantly limited because of collar weight or the 
inability to produce a recordable signal [7, 8, 12, 15, 16, 
18–24]. Additionally, urban and highly suburban land-
scapes present specific challenges for GPS related to sig-
nificant sky view interference, excessive signal reflection 
or rebounding, and signal disruption [12, 25, 26].

Over the last decade, researchers have continued to 
develop radio telemetry equipment for small mam-
mals, and VHF collars remain a cost effective, preferred 
method of collecting locational information on small 
mammals that were under heavy forest canopies, bur-
row underground, or spend any time underwater [12, 
27]. Recent advances in micro-VHF trackers (< 1.0  g) 
are enabling more accurate estimates of small mammal 
movements, resource selection, seasonal effects, territo-
rial behaviors, and microhabitat use [27–32]. While these 
advancements in micro-VHF trackers are enabling us to 
address ecology and management needs of small mam-
mals, there remain considerable limitations in tracking 
methodology for micro-VHF devices. Given the lag in 
GPS miniaturization, currently there are two primary 
methods of data collection from the micro-VHF trackers 
for small mammals: fixed, automated stations and manual 
triangulation via a simple, directional Yagi-Uda antenna 
and compass [14, 19, 27, 28, 30, 33, 34]. Unfortunately, 
while fixed, automated radio telemetry stations allow for 

increased data collection and reduce human interference 
with animal movements in the field, they are typically 
not viable in urban or highly suburban settings because 
of VHF signal interference in strength, directionality, and 
signal reflection or rebounding [35–38]. The remaining 
option is manual VHF telemetry. Manual telemetry is 
labor intensive, has higher error rates, experiences signal 
reflection, is impacted by vegetation cover and electro-
magnetic interference, among other issues [13, 14, 39]. 
Additionally, manual VHF limits the number of locations 
a researcher can obtain, which limits analysis options, as 
opposed to GPS that typically collects > 1000 + locations 
per animal [9]. Most importantly, the current biotelem-
etry literature lacks documentation, standardization, or 
guidance on telemetry for micro-VHF devices, and there 
is no consensus on the method of estimation of the actual 
geographic locations. This is especially glaring for telem-
etry done in urban or suburban environments.

When researchers collect home range and movement 
information on small mammals, they typically con-
duct manual triangulation during peak activity by a sole 
researcher or a small field research team [19, 29, 30, 33, 
40]. The collection of bearings requires the calculation 
of geographic coordinates. The literature cites multi-
ple ways to analyze azimuth data, but there is variation 
in method and inconsistency in reporting of methods 
of estimation, treatment of outliers, and the use of error 
polygons [16, 39]. In our search for current estima-
tion programs, Location of a Signal (LOAS; Ecological 
Software Solutions LLC, Sacramento, California, USA), 
Locate III (Version 3.34, Pacer Computing, Tatama-
gouche, Nova Scotia, Canada), and the Sigloc package in 
program R [41, 42] were commonly cited and allowed for 
location estimates that could calculate a single or average 
location from different estimation procedures including 
Maximum Likelihood Estimation, and other common 
methods such as Andrews, Huber’s, and Tukey Arith-
metic Mean [43–45]. While these commercial and pub-
licly available programs make estimating locations more 
simple for researchers, the programs and specific set-
tings selected within those programs, along with telem-
etry error rates, have been recognized as underreported 
yet highly impactful [13, 26, 46]. Given the relative ease 
of use of these programs and the increasing ability to 
track small mammals using micro-VHF collars, the lack 
of documented setting selections and error reporting is 
significant because error polygon creation and exact XY 
locations could not be equivalent across programs [13, 
17, 25], and small amounts of variation could lead to 
erroneous conclusions. More specifically, there is a sig-
nificant lack of information on (1) standardized method-
ologies for collaring and tracking small mammals when 
geographic coordinates are the goal; (2) bearing error 
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collection, calculation, and use in location estimation, 
and (3) specific location estimators and selected program 
input settings.

We studied white-footed mice, which are easy to cap-
ture, have large, sustainable populations, cover numerous 
types of habitat, and have major implications in vector-
borne disease ecology. So, in this case study, we outlined 
a standardized, highly coordinated tracking technique 
for very small mammals. Then, we analyzed the perfor-
mance of three radio telemetry location estimator pro-
grams by comparing the resulting sets of XY locations 
and the home ranges those points created based on pro-
gram default settings. Finally, we investigated how differ-
ent estimator programs could influence simple, example 
downstream analyses. These analyses tested the hypoth-
esis that the specific estimator program selected could 
significantly impact a studies’ findings. Our analyses 
also met our general objectives of providing a reference 
for collaring and telemetry methodology for urbanized 
study areas and establishing guidance on location esti-
mator program documentation and selection for future 
researchers.

Methods
Study area
This study was conducted in Howard County, Mary-
land, USA. Howard County is in the Piedmont region of 
Maryland and received average annual precipitation of 
116.6  cm [47, 48]. Howard County is currently a mixed 
hardwood forest dominated by oak/hickory [47, 49]. The 
total 2019 population for Howard County was estimated 
to be 325,690 persons [50]. More specifically, this study 
was conducted within a fragmented suburban/urban 
county park in Howard County, Maryland: Blandair 
Regional Park (60.7  ha). Blandair Regional Park (Blan-
dair) had a substantial number of single-family homes 
bordering the park boundary and fell within the defined 
highly suburban landscape of the Howard County met-
ropolitan zone [51, 52]. Blandair consisted of very small 
grasslands with a developing forest and some histori-
cal buildings. Dominant plant species within the park 
consisted of autumn olive [Elaeagnus umbellate], black 
cherry [Prunus serotina], black walnut [Juglans nigra], 
grapevines [Vitis spp.], Japanese stiltgrass [Microstegium 
vimineum], mile-a-minute [Persicaria perfoliate], oaks 
[Quercus spp] and wine berry [Rubis spp.].

Trapping
Small mammal trapping occurred from April to October 
in both 2018 and 2019. We randomly located two trap-
ping grids in Blandair park along homeowner’s lawn/
forest edge specifically for conducting mouse telemetry. 
Our focal species was Peromyscus leucopus (white-footed 

mice). Within Maryland, white-footed mice are one of 
the most abundant species, and we used morphologic 
characteristics to distinguish between other species [53, 
54]. Within each individual trapping grid, the transects 
(n = 6) were spaced 15  m apart (Fig.  1). Individual trap 
placement on each transect (6 traps per transect) started 
from the homeowner’s lawn/forest edge and moved into 
the forest interior. Therefore, each trapping grid con-
sisted of 36 traps for a total of 72 traps in Blandair. Trap 
locations were recorded with a Garmin GPSMAP 64ST 
Handheld GPS unit (Olathe, Kansas, USA) and marked 
with tree flagging and a numbered ground flag. Sherman 
live traps (3 × 3.5x9″, H. B. Sherman Traps, Inc. Tallahas-
see, FL, USA) were baited with apples and a mixture of 
peanut butter, nuts, and rolled oats. To minimize stress 
and exposure of captured small mammals, traps were 
set after 3  pm and checked a half-hour before sunrise 
[55]. Mice were transferred to a clean clear bell jar that 
contained Isoflurane-soaked cotton balls in a separated 
chamber, approximating a dosage of 0.08–2.5%mg/kg 
[56]. Breathing rate was monitored for reduction by 50% 
from pre-anesthesia levels (80–100 breaths/min) [56, 57].

Collaring methods
Only mice weighing > 17  g were considered for collar-
ing to ensure collars weighed ≤ 5% of body mass [14]. 
Mice were collared with Holohil Systems Ltd model 
BD-2XC VHF collars. The micro-VHF Collars were 
distributed with the goal of tracking two mice at each 
trap distance interval, regardless of sex. Additional 

Fig. 1 Mouse trapping grids at Blandair Regional Park, Howard 
county, Maryland, USA, 2018–2019
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collars were placed as appropriately sized mice were 
captured (Fig.  2). Given the small, often overlapping 
home range size of mice, collars were at least 0.40 MHz 
apart. The strap of each mouse collar was modified to a 
braided fiber fishing line that fit through flexible plas-
tic tubing (Attachment Instructions, Holohil systems 
Ltd, Ontario, Canada). In total, the micro-VHF col-
lars weighed 0.75  g and the estimated battery life was 
approximately 10 weeks.

When fitting collars, first, cotton yarn was used to 
measure the specific circumference of the mouse’s neck. 
Then, the collar’s length was trimmed to fit the specific 
mouse, and the antenna was wrapped through the plastic 
tubing to ensure a strong signal. The collar was put on the 
mouse and tightened to allow for limited rotation around 
the neck, but loose enough to have movement. The col-
lar was able to rotate but not loose enough to allow the 
mouse to chew the antenna or slide a leg through the 
collar. Technicians made careful note of the mouse’s gen-
eral eye appearance before and after being collared, spe-
cifically noting any bulging of the eyes, which typically 
indicated an overly tight collar (Fig.  2). Once the collar 
had a proper fit, a crimp bead was used to secure the 
collar strap at the determined size (Holohil systems Ltd, 
Ontario, Canada). Finally, the magnet was removed, and 
the VHF signal was checked. Mice were placed in a mesh 
enclosure with extra cotton, bait, and a hand warmer 
to recover for up to 20 min to ensure no negative reac-
tion to the collar. Mice that were lively and not focused 
on the collar were released back in the original trapping 
location. Mice that were hyper-focused on the collar had 

their collar removed and were released at the original 
trapping location.

Telemetry
Before collaring mice, technicians listened to collars 
from varying distances until the signal was consistently 
not detected to determine general signal strength. This 
allowed for the creation of a dimensional area around 
where mice were collared that ensured hearing the VHF 
signal while limiting disturbance of mice. After collar-
ing, mice were tracked for approximately 6  weeks from 
May to July and again from August to October in both 
2018 and 2019. Each week, nightly telemetry was done at 
each trapping grid, allowing each individual mouse to be 
tracked for ≥ 3 nights over each 6-week period. To ensure 
capture of large foraging movements of mice each night, 
telemetry started one hour before civil sunset. Each 
telemetry session lasted approximately 5  h from dusk 
until midnight. Telemetry entailed three or more techni-
cians working in conjunction standing at fixed corners of 
the grid (100 × 100 m square). When in their consistent, 
initial position outside of the trapping grids, which was 
GPS recorded, they used synchronized stopwatches and 
recorded bearing angles for all mice in sequential order 
by mouse radio frequency. This process was initiated in 
40-min intervals. During each interval, ≥ 3 bearings were 
obtained for each mouse within the plot. Although rare, 
if a mouse within the plot was not able to be detected, 
a technician would shift halfway down (50 m) the length 
of the telemetry transect and again attempt to collect 
locations on the missing collar. Telemetry was concluded 

Fig. 2 Proper mouse collar fit with normal appearances of eyes as seen in A and typical mouse movements (B)
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each night when we noted the obvious decrease or end of 
major movements via consistent bearing angles over one 
40-min interval. After the 6 weeks of tracking concluded, 
recovery of all collars was attempted.

To assess technician telemetry accuracy, 5 mouse col-
lars were hidden in randomly selected general areas and 
specifically placed in areas that mice might regularly 
inhabit such as downed woody debris, buried in leaf lit-
ter, or in tree cavities. The location of the error collars 
was recorded to within ≤ 2 m accuracy via GPS. Techni-
cians were directed to within approximately 100 m of the 
hidden collar and asked to perform triangulation. The 
10 technicians triangulated ≤ 5 collar locations, depend-
ing on their work schedule. To calculate the technician 
error, error polygons were created by creating waypoints 
(points) and bearings (polylines) using  ArcGISⓇ Dis-
tance and Direction Editor Tool, and the centroid of the 
resulting polygon was calculated using  ArcGISⓇ Calcu-
late Geometry tool [58]. The error was recorded as the 
distance from the centroid of the error polygon to the 
true collar location. The weighted average of all telemetry 
error measurements was considered the measurement 
of telemetry bias or accuracy; weights were based on the 
frequency of telemetry performance by each technician. 
Then, differences in the bearing angles recorded by the 
technician versus the bearings that would have produced 
the exact true collar location were back-calculated using 
 ArcGISⓇ Distance and Direction Editor Tool. Those 
angles represented the precision of the telemetry error of 
this study.

Location comparisons
We calculated locations from bearings in LOAS, Locate 
III, and the Sigloc package. LOAS and Locate III are 
stand-alone commercial programs and the Sigloc pack-
age, along with all other statistical analyses, were run 
in program R [42]. Given the almost complete lack of 
reported project-specific error and programmatic set-
tings in the literature, we assumed that most research-
ers let the program estimate the error rate. Furthermore, 
many researchers created error polygons around esti-
mated points after calculation, and incorporating errors 
across programs was not equivalent. For example, LOAS 
allowed error to be input and created different outputs, 
Sigloc-R required creation of unique code to incorporate 
error, and LOCATE was unclear how it was incorporat-
ing the only error it allowed for, bearing error. So, for 
initial comparisons, we did not adjust the default setting, 
no adjustment, for bias error and accuracy error within 
the programs. All three programs created confidence 
ellipses for each location. However, they are not ever 
accounted for in the literature, nor are they comparable 

to a manual error polygon, which has no firm statistical 
error estimate.

The only other setting that was an option to adjust was 
the output file type and the actual estimator. For all pro-
grams, we chose the Maximum Likelihood Estimator 
(MLE) as the location estimator given its popularity in 
the literature [14, 59, 60]. MLE is a statistical inference 
method, in this case an optimization method of estimat-
ing the location, that maximizes a likelihood function so 
that the observed data are most probable [59, 60]. MLE is 
widely used because the estimation method is repeatable 
and produces nearly optimal inference [23, 39, 61–63]. 
However, MLE can be sensitive to outlier bearing error, 
caused by issues like signal rebounding [13, 14, 59]. So, 
the three programs were comparable in all metrics that 
the user could control. For a mouse or its locations to be 
included in further analyses, we selected only mice that 
had ≥ 3 complete nights of telemetry data. Locations 
produced from all programs were visually evaluated in 
 ArcGISⓇ. Any obvious outlier locations, such as a sin-
gle point that fell significantly beyond the trapping grid 
(> 200 m), were assumed a recording error and assessed 
for input error and considered for removal. Individual 
mice were considered for exclusion if their predicted 
home ranges were nonsensical in size (> 10,000m2) [29, 
57, 64–67] or more than one program failed to converge.

Several comparisons were made to assess the default 
program performance in a known situation. Using the 
known “true” locations, the original bearings for all test 
collars were input in LOAS, Locate III, and Sigloc, cre-
ating three sets of locations of the test collars. Then, the 
distance between the program outputs and the known 
collar locations was calculated. Next, we calculated the 
difference between the manual calculations of the cen-
troids of the technicians’ error polygons to the actual 
program estimates. Then, to better assess the magnitude 
of impacts of bias and precision issues, we input back-
corrected, now “perfect”, bearings for the known collar 
locations from one random set of waypoints for each 
technician into each program. Three sets of corrected 
locations were produced. The distance between those 
back-corrected outputs and the known collars was calcu-
lated. Finally, beyond the descriptive statistics calculated, 
we compared all outputs with Friedman tests.

Home range comparisons
Using the actual mouse data, a home range was created 
for each mouse using the three sets of geographic loca-
tions produced by each program. We did this using two 
different functions in the adehabitatHR package in Pro-
gram R [68]. First, 95% and 50% Minimum Convex Poly-
gon (MCP) home ranges were created because they are 
still a commonly reported home range approximation in 
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the small mammal literature [28, 33, 65]. However, due to 
the advancement in home range analytics, we also create 
95% and 50% kernel density estimates (KDE) for compar-
ison of basic, downstream analyses [69, 70]. The KDE ref-
erence bandwidth (href ) was selected as the most basic 
bandwidth based on the total lack of reporting of band-
widths used for very small mammals and to maximize the 
convergence of more limited data [70]. We tested home 
ranges individually as well as on average.

Based on the complex ecology of tick-borne diseases, 
differences in mouse home range size or shape and dif-
ferent preferences for yards, trails, or interior forest may 
influence the usage of rodent-targeted IPM devices and 
their placement. Given that knowledge, we first tested for 
simple differences in average home range size (for both 
MCP and KDE) using Friedman tests. Then, we analyzed 
differences in average home range size between pairs 
of programs using Wilcoxon sign-rank tests (for both 
MCP and KDE). Next, we calculated perimeter-to-area 
ratios, overlap, and land cover makeup for the KDE home 
ranges. Then we used a Levene’s test to understand the 
variability in the perimeter-to-area ratios between pairs 
of programs. Finally, we compared the land cover cat-
egories that each program identified for the composite 
KDE home ranges using Friedman tests. Shapiro–Wilk 
tests and all other statistical tests were conducted in pro-
gram R. Spatial GIS data came from the high-resolution 
2013–2014 Chesapeake Bay watershed land cover dataset 
(1 m resolution) [71]. All spatial calculations were done 
in  ArcGIS® [58]. Generally, values were found to be non-
normal, so non-parametric tests were used along with a 
significance threshold of alpha = 0.05.

Results
Trapping
Overall, there were 4,896 traps set between 2018–2019. 
There were 239 captures of 165 unique individuals. Of 
the 165 individuals captured, 77 were appropriately sized 
to receive a collar (49 males and 28 females). Sixteen 

mice were predated almost immediately, leaving 61 
mice (40 males and 21 females) with > 1 season worth of 
telemetry data.

Telemetry
From fall of 2018 through spring of 2019, 10 technicians 
located ≤ 5 different known collar locations, depend-
ing on time of employment, for a total of 43 full sets of 
bearings. The mean error distance from a known loca-
tion collar was 6.59 ± 2.7 m. The mean bearing error was 
13 ± 3.18 degrees from the true bearing. Of the 61 mice 
tracked at Blandair Park between 2018 and 2019, only 31 
[(2018: n = 18, 11  m:7f ) and (2019: n = 13, 8  m:5f )] met 
the inclusion criteria for the programmatic compari-
sons (≥ 3 complete nights of telemetry data). For those 
31 mice, 5,835 unique bearings were recorded that could 
have resulted in 1,945 locations. However, each estimator 
produced a different number of gross locations, with the 
Sigloc package producing almost double the other pro-
grams (Sigloc = 1,745, Locate III = 968, LOAS = 984).

Interestingly, the distance from known collars to the 
ArcGIS® calculated centroid of the technicians’ error 
polygon was the shortest (6.59 ± 2.70  m, Table  1), and 
Sigloc produced locations the furthest mean distance 
away (9.1 ± 7.50 m, Table 1). No one program produced 
locations significantly further than another from the true 
locations for the three programs (X2

3 = 1.33, P = 0.69). 
When technician bearings were corrected, the programs 
performed very well and were extremely similar (Table 1), 
and there was no significant difference between cor-
rected predictions across programs (X2

2 = 0.48, P = 0.79). 
Finally, as expected, the Wilcoxon sign-rank tests indi-
cated there were differences between the paired uncor-
rected and corrected programs’ distances from the test 
collars (LOAS: W1 = 45, P = 0.004; Locate III: W1 = 45, 
P = 0.004; and Sigloc: W1 = 36, P = 0.008).

Home ranges comparisons
One mouse was removed from all analyses because its 
MCP and KDE home ranges produced extraordinarily 

Table 1 Distances between the known location of a collar and its predicted, manual, and back-corrected error polygon centroids

Comparison N Min Median Max Mean SD

Known versus  ArcGIS® Centroid 39 1.70 6.30 12.10 6.59 2.70

Known versus LOAS 43 1.30 5.40 28.90 7.80 6.06

Known versus Locate III 42 1.30 5.85 29.50 7.90 6.13

Known versus Sigloc 41 1.10 7.20 34.80 9.10 7.50

Known versus corrected LOAS 10 0.02 0.07 0.42 0.15 0.15

Known versus corrected Locate III 10 0.02 0.08 0.42 0.15 0.15

Known versus corrected Sigloc 10 0.02 0.09 0.42 0.16 0.15
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large area estimates for both Sigloc in program R 
(83,733,335m2) and Locate III (4,736,553m2). One addi-
tional mouse was removed from any calculations for 
program Locate III because of failed convergence. Calcu-
lations of mouse home range size varied widely between 
the three programs, ranging from an average 95% MCP of 
 1747m2 to 19,667  m2 (Fig. 3, Additional File 1). For 95% 
KDE the range was  7121m2 to 37,640m2 (Fig.  3, Addi-
tional File 2). However, the amount of variation or spread 
in home range sizes for a specific program, regardless 
of method or 95% versus 50%, did not differ (all p-val-
ues > 0.38). When average home range sizes were com-
pared, all 3 programs differed at the 95% and 50% MCP 

and KDE home range levels (Table 2). When grouped by 
sex, home range areas were significantly different across 
the programs at both scales (Table  2), and paired Wil-
coxon sign-rank tests supported differences between all 
groups (Table 3). Descriptive statistics on area of overlap 
indicated some shared space differed across programs 
(Additional File 3).  

Overlap of the average 95% MCPs was significantly 
different (X2

2 = 38.35, P < 0.001), but the overlap of the 
50% MCPs was not significantly different (X2

2 = 3.09, 
P = 0.21). Average KDE home ranges at both contour 
levels were found to be significantly different in terms of 
overlap (95%: X2

2 = 20.63, P < 0.0001; 50%: X2
2 = 29.24, 

Fig. 3 Minimum convex polygon (MCP) and kernel density estimator (KDE) home ranges for an example mouse BLU320 calculated by three 
different estimator programs (MCP-LOAS [A], MCP-LOCATE III [B], MCP-program R Sigloc [C], KDE-LOAS [D], KDE-LOCATE III [E], and KDE-program R 
Sigloc [F])
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P < 0.001). Perimeter–area ratios for the average KDE 
home ranges differed across programs (95%: X2

2 = 32.07, 
P < 0.0001; 50%: X2

2 = 38.34, P < 0.0001; Additional File 
4). Pairwise program comparisons indicated significant 
perimeter–area ratio differences between all programs 
at all levels, except 95% KDE home ranges created with 
LOAS and Locate III (Table  4). Land cover summary 
statistics consistently indicated a dominance of forested 
and herbaceous areas across all programs, although exact 
means varied. However, the amounts of land cover types 
in average KDE home ranges differed across all programs 
except in the categories of impervious surface and mixed 
open land cover, which were two of the smallest catego-
ries in terms of area (Table 5).

Discussion
Manually calculating telemetry locations and subsequent 
home range, movement, and resource selection calcula-
tions are heavily used within wildlife research. Yet over a 
decade later, some of the criticisms from Laver and Kelly 
still hold true within our own search to find appropriate 
ways to handle our small mammal telemetry data [72]. 
In their study, they reviewed 161 home range papers and 
concluded that although there is no one best technique, 
there should be a unified way of reporting methods for 
creating home ranges [72]. We agree with that statement 
and extend it to the need for a uniform way of justifying 
and reporting methods of collection, error assessment, 
and calculation of XY locations from manual telemetry.

In this study, mouse trapping, collaring, and tracking 
were heavily influenced by the suburban–urban envi-
ronment of the study area. Field sites were relatively 
close to trails, human activity, and human influenced 
areas. Working in such a heavily suburban area can 
make telemetry very difficult given the ongoing signal 

Table 2 Minimum convex polygon (MCP) and kernel density 
estimator (KDE) home range size  (m2) compared across three 
location estimator programs (LOAS, Locate III, and Sigloc) for the 
same mice (n = 31) using the Friedman test

The mice were tracked via micro-VHF collars in a suburban park in Howard 
county, Maryland, USA, 2018–2019

Home range X2 d.f P

MCP—all

 95% MCP 46.40 2  < 0.001

 50% MCP 30.89 2  < 0.001

MCP—males

 95% MCP 29.20 2  < 0.001

 50% MCP 18.70 2  < 0.009

MCP—females

 95% MCP 18.20 2 0.008

 50% MCP 13.20 2 0.001

KDE—all

 95% KDE 34.7 2  < 0.001

 50% KDE 38.5 2  < 0.001

KDE—males

 95% KDE 19.5 2  < 0.001

 50% KDE 23.4 2  < 0.001

KDE—females

 95% KDE 15.2 2 0.005

 50% KDE 15.2 2 0.005

Table 3 Minimum convex polygon (MCP) and kernel density 
estimators (KDE) home range size  (m2) were compared across 
programs using the pairwise Wilcoxon signed-rank tests for three 
estimator programs (LOAS, Locate III, and Sigloc)

The mice (n = 31) were tracked via micro-VHF collars in a suburban park in 
Howard county, Maryland, USA, 2018–2019

Program pair W d.f P

95% MCP

 LOAS versus Locate III 75 1 0.001

 Locate III versus Sigloc 0 1  < 0.001

 LOAS versus Sigloc 0 1  < 0.001

50% MCP

 LOAS versus Locate III 109 1 0.010

 Locate III versus Sigloc 17 1  < 0.001

 LOAS versus Sigloc 11 1  < 0.001

95% KDE

 LOAS versus Locate III 100 1 0.032

 Locate III versus Sigloc 0 1  < 0.001

 LOAS versus Sigloc 32 1  < 0.001

50% KDE

 LOAS versus Locate III 92 1 0.005

 Locate III versus Sigloc 0 1  < 0.001

 LOAS versus Sigloc 40 1  < 0.001

Table 4 A comparison of pairwise perimeter–area ratios 
produced for kernel density estimator (KDE) home ranges 
(n = 31) across three estimator programs (LOAS, Locate III, and 
Sigloc)

The mice were tracked via micro-VHF collars in a suburban park in Howard 
county, Maryland, USA, 2018–2019

Perimeter/area ratio W d.f P

95% KDE

 LOAS versus Locate III 130 1 0.162

 Locate III versus Sigloc 425 1  < 0.001

 LOAS versus Sigloc 379 1  < 0.001

50% KDE

 LOAS versus Locate III 324 1 0.020

 Locate III versus Sigloc 465 1  < 0.001

 LOAS versus Sigloc 386 1  < 0.001
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interference and signal reflection. Given such constraints, 
a technician’s accuracy and precision could highly alter 
locations produced by estimator programs. Unfortu-
nately, few radio telemetry studies measure basic error 
within their study and inconsistently report accuracy and 
precision in their data [14]. The limited error reported 
in the literature ranged from 0.9 to 50 m depending on 
the animal [73–75]. Our approximate 6–7  m of loca-
tion error was at the lower end of that range and closely 
approached the suggested distance of 5  m to maintain 
accuracy given our study area size (60.7 ha) and relative 
patch sizes (~ 5–10  ha) [46]. Current in-depth resource 
selection studies of small mammals using micro-VHF 
devices are limited and even fewer have detailed telem-
etry error assessments [1, 15, 17, 23, 31, 32, 76]. There-
fore, it was difficult to gauge what distance would create 
an impactful bias in a small mammal study. Yet, these 
studies are becoming more common given advancements 
in technology and the increasing need to manage issues 
such as endangered species conservation and tick-borne 
zoonotic disease transmission.

To compare methods for VHF location estimation, we 
chose three commonly used programs and input data 
without changing the default settings because we found 

no basis for adjustments from the literature. Meaning, 
we did not include our field error measurements in the 
program settings and set each program to run an MLE. 
It is important to note that the choice of using MLE or 
M-estimators in different estimator software is not with-
out issue [13, 62, 63]. Some of the primary concerns 
when using MLE are censoring of data, limitations on 
processing azimuths, and MLE being overly restrictive in 
its confidence intervals [13, 62, 63]. While it remains an 
exceedingly common method, the criticisms push us to 
more aggressively recommend unified reporting method-
ology to enable critical evaluation of location estimates.

While we took measures to ensure comparability, each 
estimator program had slight programmatic differences, 
although those exact mechanisms were not always clear 
in the program documentation. For example, at default, 
some programs forced the identification of a centroid, 
even when bearings did not overlap (Sigloc), while oth-
ers had unclear mechanisms that culled locations before 
producing the output (Locate and LOAS). Yet, when 
considering our comparison of three predicted sets of 
back-corrected “perfect” bearings of the known loca-
tion collars, the three programs were highly accurate 
with similar output of locations, although not exactly the 
same. This confirmed that, with highly accurate inputs, 
each program performed consistently and did well. How-
ever, when test data with normal rates of error were input 
into the programs, the output locations significantly dif-
fered. It is logical and expected that the more error in the 
bearings, the more variable the results. Further, the esti-
mators did not differ in the amount they now varied from 
the known collar locations across the three programs. So, 
even though they did a worse job in terms of accuracy, 
the three programs generally erred the same. This indi-
cated stability in the production of the sets of coordinates 
across programs even when there was known error in the 
data. Unfortunately, when extending the analysis to real 
mouse data that varied in quality and quantity, relevant 
differences occurred.

As the analysis moved downstream and actual sets of 
mouse locations were used to calculate three MCP and 
KDE home ranges, small variations in the produced 
locations, likely from the inclusion or elimination of 
locations, had rippling impacts for all programs. Our 
calculations of average home range size and overlap and 
home range size analyzed by sex all differed across the 
three estimator programs, regardless of home range cal-
culation method. As expected, core home ranges were 
generally more consistent in size, and core MCP home 
ranges had no detectable differences. When analyzed 
by sex, both MCP and KDE had differences in even core 
home range areas. Because of differences in size, overlap, 
and perimeter-to-area calculations, different programs 

Table 5 Friedman tests were calculated for the quantity of land 
cover types across 95% and 50% kernel density estimate (KDE) 
home ranges (n = 31) calculated by three different estimator 
programs (LOAS, Locate III, and Sigloc)

The mice were tracked via micro-VHF collars in a suburban park in Howard 
county, Maryland, USA, 2018–2019

Land cover type by home range size X2 d.f P

95% KDE

 Impervious surface road 29.3 2  < 0.001

 Impervious surface non-road 33.42 2  < 0.001

 Tree canopy over impervious surface 19.9 2  < 0.001

 Forest 40.26 2  < 0.001

 Tree canopy over turf 39.05 2  < 0.001

 Mixed open 35.12 2  < 0.001

 Turf/shrub/scrub 36.867 2  < 0.001

 Turf grass/yard 40.75 2  < 0.001

 Crop/pasture 27.02 2  < 0.001

50% KDE

 Impervious surface road 3.7 2 0.156

 Impervious surface non-road 10.6 2 0.005

 Tree canopy over impervious surface 9.4 2 0.008

 Forest 40.35 2  < 0.001

 Tree canopy over turf 7.3 2 0.025

 Mixed open 3.9 2 0.139

 Turf/shrub/scrub 31.7 2  < 0.001

 Turf grass/yard 13.9 2  < 0.001

 Crop/pasture 18.926 2  < 0.001
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identified different dominant cover types or significant 
changes in percentage of land cover type across the KDE 
home ranges. While that difference is logical, it is worthy 
of consideration given the scale of and impact to small 
mammal resource selection analyses [31, 32, 76]. For ani-
mals that utilize such small spaces, in variable habitats, 
this could be highly impactful to a study’s findings and 
conclusions.

The three estimators produced different sets of loca-
tions that in turn produced statistically different home 
ranges. We postulated that while typical variability and 
imprecision play a role in all VHF and GPS data acquisi-
tion, it seemed to occur in this study because of culled 
bearings before location estimation. This was sup-
ported given the contrasting results between total loca-
tions attained across programs. Originally, we expected 
some of this effect given that each program had its own, 
unspecified ruleset for whether a given set of bearings 
would be included to produce an actual location. Spe-
cifically, Sigloc included all possible bearings, but it was 
unclear how the two packaged programs functioned, yet 

Locate III and LOAS total locations were similar. Addi-
tionally, locations found on the 95–100% home range 
edge are known to be impacted by error from distance 
to transmitter [14, 77]. Yet, we specifically tested the 
detecting distances of our collars, which is something 
often left unreported in the literature. The small error 
effects on peripheral locations, while not significant in 
our programmatic comparison of the testing locations, 
still seemed to result in disparate findings in even simple 
downstream analyses based on mouse home range. This 
occurred despite us conducted our telemetry within the 
easily detectable 100-m range of our collars.

To further test this hypothesis, we added two sim-
ple post hoc analyses of the locations for a random 
selection of a male and female mice from each trap-
ping session (n = 8). We compared distances between 
the produced points across programs and did a sim-
ple summary of where within the KDE points were not 
identified by each programs (Tables 6 and 7). The find-
ings of those simple post hoc tests showed relatively 
small spread in location distances across programs, 

Table 6 For a random selection of mice (n = 8), we calculated the number of sets of bearings that one program produced that had 
matching locations (< 10 m) produced by both other two programs, creating a triplicate of locations from that one set of bearings that 
fell within the same area of the home range (total possible locations = 234)

These counts were summarized and averaged, including standard deviation (SD) and coefficient of variation (COV) across the core (0–50%) kernel density estimate 
(KDE) home range and the exterior edge KDE home range (51–95%) across three different estimator programs (Locate III, LOAS, and Sigloc). The mice were tracked via 
micro-VHF collars in a suburban park in Howard county, Maryland, USA, 2018–2019

Mouse ID 51–95% KDE

Locate III LOAS Sigloc

140 3 3 1

161 7 7 4

411 9 9 1

209 6 6 2

244 1 9 0

337 3 9 0

387 6 13 8

412 9 13 3

Average (SD)[COV] 5.5 (2.7) [48] 8.6 (3.2) [37] 2.4 (2.5) [104]

Mouse ID 0–50% KDE

Locate LOAS R

140 16 17 18

161 18 18 22

411 16 15 24

209 26 26 30

244 14 6 15

337 16 15 23

387 30 24 28

412 44 39 51

Average (SD)[COV] 22.5 (9.7) [43] 20 (9.2) [26] 26.4 (10.4) 
[39]
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with Sigloc R accounting for more variation (Table  7). 
For those 8 mice, when each program was able to pro-
duce a location (n = 234) from the same set of bearings, 
the average difference in locations was approximately 
7  m. When comparing how the programs performed 
in the 0–50% and the 51–95% KDE contours, we saw 
similar variation between all three programs within the 
core home range (Table 6). Lastly, along with the inher-
ent programmatic differences, some differences were 
likely due to wider ranging male mice, which created 
more variable location estimates, as well as possible 
unaccounted sources of error such as signal reflection, 
vegetation cover, and animal movement [14].

Our findings suggest that, when micro-VHF studies 
utilizing manual telemetry are limited to MCPs, regard-
less of location estimator used, core home ranges should 
be utilized for analyses. Given the variability in location 
estimation, 50% MCPs inherently provide more appropri-
ate comparisons across and among small mammals. Using 
the more advanced kernel density estimators for small 
mammals is relatively new and has unique estimation 
considerations including choice of bandwidth or smooth-
ing parameter [70]. We found that the KDE were more 
impacted by the Sigloc’s estimated XY locations, likely 
because many were included that were culled from the 
other programs (Table 6). This emphasizes the importance 
of addressing issues of bias in location data collect, XY 
location estimator choice—especially how it culls bearings, 
and reporting more methods details in the literature [72]. 
For the research we were conducting, the results of these 
differing programs, even a 10-m difference in movements 
through microhabitat, could change where we placed spe-
cific insecticide-containing IPM devices, and the size and 
overlap of home ranges would dictate how many devices 
must be placed [25, 78, 79]. We suggest researchers care-
fully consider downstream analyses when investigating 
movements or habitat use of small mammals, test collar 
detection distances, and calculate their error in terms of 
accuracy and precision specific to their study sites before 
launching full telemetry studies.

Interestingly, manual calculations directly with 
 ArcGIS®, while likely too time consuming for large 
studies, did quite well in our study and can easily be 
used to assess telemetry error. Information on detec-
tion distances and technicians’ ability to triangulate will 
help guide the confidence in proper analyses of home 
range and habitat use. We most appreciated both LOAS 
and the Sigloc package, as they had more options in 
terms of user control. LOAS allowed the user to choose 
different types of estimators if desired and was a user-
friendly packaged program, although its bearing culling 
mechanism was unclear. The Sigloc package allowed 
someone proficient in the coding of R to specify exactly 
how the locations would be assessed, created, and 
potentially culled if additional code was added. So, 
while the Sigloc package was liberal in its default set-
tings, it provided the most flexibility, power, and would 
be the easiest to replicate given the access to the exact 
code. However, we highly suggest additional program-
ming added to the Sigloc package to cull bearings or 
error polygons based on one’s specific study telemetry 
error.

Conclusion
The goals of this paper were to document complications 
in  collaring and tracking small mammals with micro-
VHF collars and to investigate specific location estimator 
impacts on small mammal studies. We have illustrated 
the need for collar and error assessment, telemetry docu-
mentation, and shown the variation in three common 
location estimators. We have illustrated several ways 
in which these programs may influence other analy-
ses, including general home range characteristics and 
changes in identified associated land cover. The results 
presented here illustrate that the program a researcher 
uses can significantly sway the biological outputs and 
significantly impact downstream analyses. As such, error 
measures and programmatic choices should be consid-
ered an integral component of study design, reporting 
of findings, as well as more thoroughly discussed in the 
literature, especially for microhabitat analyses of animals 
with very small ranges.

Abbreviations
KDE: Kernel density estimator; LOAS: Location of a signal (trademarked soft-
ware); MCP: Minimum convex polygon; MLE: Maximum likelihood estimator; 
VHF: Very high frequency.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40317- 022- 00301-2.

 Additional file 1. Descriptive statistics for 31 (19 males and 12 females) 
Minimum Convex Polygon home ranges for Peromyscus spp. The total 
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the distance between all sets of bearings that resulted in a 
location (n = 234) across three different estimator programs 
(Locate III, LOAS, and Sigloc).

The mice were tracked via micro-VHF collars in a suburban park in Howard 
county, Maryland, USA, 2018–2019

Program comparison Min Max Mean SD

LOAS/R  < 0.01 78.06 9.01 13.60

LOCATE III/LOAS 0.00 49.91 1.92 6.85

LOCATE III/R 0.00 77.59 8.92 12.75
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suburban park in Howard county, Maryland, USA, 2018–2019. 
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LOCATE III, and Sigloc). The mice were tracked via micro-VHF collars in a 
suburban park in Howard county, Maryland, USA, 2018–2019. 

Additional file 4. Perimeter area ratio for kernel density estimator (KDE) 
home ranges (n = 31) across three estimator programs (LOAS, LOCATE III, 
and Sigloc). The mice were tracked via micro-VHF collars in a suburban 
park in Howard county, Maryland, USA, 2018–2019.
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