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METHODOLOGY

Wearable reproductive trackers: quantifying 
a key life history event remotely
Luke Ozsanlav‑Harris1,2*, Larry R. Griffin2,3, Mitch D. Weegman4, Lei Cao5, Geoff M. Hilton2 and Stuart Bearhop1 

Abstract 

Advancements in biologging technology allow terabytes of data to be collected that record the location of individu‑
als but also their direction, speed and acceleration. These multi-stream data sets allow researchers to infer move‑
ment and behavioural patterns at high spatiotemporal resolutions and in turn quantify fine-scale changes in state 
along with likely ecological causes and consequences. The scope offered by such data sets is increasing and there is 
potential to gain unique insights into a suite of ecological and life history phenomena. We use multi-stream data from 
global positioning system (GPS) and accelerometer (ACC) devices to quantify breeding events remotely in an Arctic 
breeding goose. From a training set of known breeders we determine the movement and overall dynamic body 
acceleration patterns indicative of incubation and use these to classify breeding events in individuals with unknown 
reproductive status. Given that researchers are often constrained by the amount of biologging data they can collect 
due to device weights, we carry out a sensitivity analysis. Here we explore the relative merits of GPS vs ACC data and 
how varying the temporal resolution of the data affects the accuracy of classifying incubation for birds. Classifier accu‑
racy deteriorates as the temporal resolution of GPS and ACC are reduced but the reduction in precision (false posi‑
tive rate) is larger in comparison to recall (false negative rate). Precision fell to 94.5%, whereas recall didn’t fall below 
98% over all sampling schedules tested. Our data set could have been reduced by c.95% while maintaining precision 
and recall > 98%. The GPS-only classifier generally outperformed the ACC-only classifier across all accuracy metrics 
but both performed worse than the combined GPS and ACC classifier. GPS and ACC data can be used to reconstruct 
breeding events remotely, allowing unbiased, 24-h monitoring of individuals. Our resampling-based sensitivity analy‑
sis of classifier accuracy has important implications with regards to both device design and sampling schedules for 
study systems, where device size is constrained. It will allow researchers with similar aims to optimize device battery, 
memory usage and lifespan to maximise the ability to correctly quantify life history events.
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Background
Biologging technology is revolutionising our understand-
ing of animal movements. Recent developments have 
enabled the recording of high resolution spatiotemporal 
data and additional sensors provide numerous ancillary 

data streams that characterise individual movement 
(acceleration, speed and heading) and physiological state 
(body temperature, blood pressure and heart rate). There 
are numerous applications of these data streams in isola-
tion and combination, and we are only just beginning to 
explore their potential. For example, GPS data has been 
used to distinguish search from forging behaviours and 
understand foraging site fidelity in Northern Gannets 
Morus bassanus [1, 2], GPS and ACC data to reconstruct 
continuous-time movement paths via dead reckoning in 
numerous mid-sized mammals [3] and ACC data to infer 
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different modes of flight in White storks Ciconia ciconia 
[4].

Aside from identifying movement or behavioural 
states, biologging can be used to explore more general 
questions about life history and behaviour, for instance 
GPS data can be used to pinpoint exactly where and 
when mortality occurs within the annual cycle especially 
for migratory species, e.g., Black-tailed Godwits Limosa 
limosa and Black Kites Milvus migrans [5, 6]. Of course, 
these broad ecological life history questions can also be 
explored via direct observations of individuals in some 
circumstances but using biologging has important advan-
tages. First, it can allow full annual cycle sampling at the 
individual-level, allowing researchers to examine life-
history consequences and trade-offs such as the effect of 
migration distance on reproductive success [7]. Second, 
it means we can examine an individual’s movements and 
behaviours when they are not directly observable using 
conventional methods, thereby reducing sampling biases. 
Third, the rich data sets created reveal rare, but neverthe-
less important, movement or behavioural states that may 
have otherwise been missed, e.g., calving events in ungu-
lates [8]. Current biologging data sets still have some 
drawbacks such as a smaller number of individuals fol-
lowed and shorter study durations.

For birds, a key life history event that biologging can 
quantify is breeding, represented by distinctive move-
ment and activity patterns because of constraints associ-
ated with egg-laying and incubating. Approaches that can 
identify incubation initiation and failure/hatching will 
allow researchers to derive regular estimates of daily nest 
survival and productivity, and identify potential causes 
of nest failure. Previous approaches to identify breed-
ing events in birds using GPS data failed to distinguish 
breeding attempts lasting fewer than seven days and 
could not accurately quantify the total length of breed-
ing attempts [9–11]. Identifying these short-lived nest-
ing attempts is required if we are to differentiate between 
breeding deferral, no nest site preparation or egg lay-
ing, and early nest failure, laying of eggs but failure dur-
ing the first few days of incubation. This is an important 
distinction when trying to diagnose the cause of popula-
tion decline as different environmental variables and life-
history factors may drive breeding propensity [12, 13] in 
comparison to early nest failure [14, 15]. A more recent 
approach combining GPS and ACC data [16] was able 
to identify nesting attempts of greater than three days 
and quantify the duration of nesting attempts. This was 
achieved by identifying days, where movement or ODBA 
fell below an arbitrary threshold and then assigning the 
median latitude and longitude for those days as the nest 
site. Birds were then classified as ‘nesting’ as long as 75% 
of GPS fixes were within 50 m of the proposed nest site. 

These improvements on previous approaches were due to 
ACC data allowing brief breeding attempts to be distin-
guished from daily roosting, foraging routines or moult 
periods that can appear similar to nesting behaviour 
using GPS data alone.

A challenge that faces all avian biologists using biolog-
ging devices is to optimise the trade-off between data 
resolution, maintaining battery power and device weight. 
The size, body weight, morphology, migration distance 
and flight mode of many birds place limitations on device 
size and attachment methods due to the risk of deleteri-
ous effects [17]. Device design and weight affect the bat-
tery power and memory capacity, which have important 
implications for the number of data streams recorded 
and their temporal resolution. Since sampling schedules 
can affect our ability to accurately quantify movement 
patterns and space use [18, 19], depending on the meth-
odological approach [20], it will also affect the ability to 
accurately discern life history events based on unique 
movement signatures. Decisions on device sampling 
schedules often have to be made before deployment, or 
at least before preliminary analysis, with currently little 
information available to guide choices, but see Mitchel 
et  al. [21] and Noonan et  al. [22], which explore how 
GPS sampling regimes influence home range estimates. 
Likewise, devices that are reprogrammable after deploy-
ment may not be contactable if birds are in areas without 
mobile phone network connectivity. This makes it chal-
lenging to determine whether a given sampling sched-
ule will allow the biological question of interest to be 
answered while not oversampling which risks depleting 
the device battery.

In the current paper, we present a method that uses 
GPS and ACC data to determine the duration of incuba-
tion in an Arctic nesting goose species. Guidance is also 
provided on the optimisation of device design and sam-
pling schedules to accurately quantify breeding events 
for a range of device sampling regimes in birds. Classi-
fication of incubation periods is achieved using a set of 
known breeders that can train the classification scheme 
and ground-truth its accuracy. This methodology is stress 
tested by calculating its accuracy, while the sampling 
intervals of the data are varied and GPS and ACC data 
are used in combination and isolation. Compared to the 
approach in Schreven et al. [16] our method has a num-
ber of key differences: (1) it does not require complex 
statistical methodologies, (2) rule-based thresholds for 
classification are set automatically as opposed to requir-
ing arbitrary choices, and (3) classification can be car-
ried out using a single data stream, i.e., GPS or ACC data. 
Importantly this allows the sampling interval of biolog-
ging data to be changed with no alterations to the coding 
of our classifier.
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Methods
Study system
The Greenland White-Fronted Goose Anser ablifrons 
flavirostris (GWfG) is an artic migrant that breeds in 
Western Greenland, spends the non-breeding period in 
the Britain and Ireland and uses Iceland as a staging area 
in spring and autumn. Birds depart Iceland at the start 
of May with incubation initiated in Western Greenland 
between mid-May and mid-June, meaning incubation 
extends into early July in some cases [23]. Incubation is 
followed by a 3–4 week moult period that mainly occurs 
in July but can be earlier for deferred and failed breeders, 
and therefore, the breeding and moult periods may over-
lap within the population [24]. Only females incubate the 
clutch and will take one or two recesses daily, totalling 
up to 80  min [23]. From the point of incubation initia-
tion, a clutch takes at least 24 days to hatch [25]. Due to 
these aspects of breeding biology, it was expected that 
female geese would show clear differences in movement 
and behavioural patterns during periods of incubation 
compared to other relatively static behaviours during 
the breeding season (May–September), e.g., roosting or 
moult. For a given day of incubation we do not expect 
the movement patterns and energy expenditure to dif-
fer between birds that fail prior to 24 days of consecutive 
incubations compared to those that ultimately go on to 
hatch a clutch, this is based upon direct observation of 
breeding birds [23]. If a brood survives, the young associ-
ate with their parents for at least their first non-breeding 
season [26], enabling visual identification of individually 
marked, successfully breeding adults on the non-breed-
ing grounds in Britain and Ireland.

Device deployment and sampling schedules
Biologging collars were deployed on geese caught at 
baited sites using cannon nets in Scotland (31 devices), 
Northern Ireland (5 devices), Ireland (19 devices) and 
Iceland (9 devices) during September 2017–March 2020. 
Geese were sexed by cloacal examination in the field dur-
ing post-capture handling. In total we tracked 64 indi-
vidual breeding seasons from adult females with some 
individuals being tracked for up to 3 years. Ornitela GSM 
solar neck collar devices (model N38, Vilnius, Lithuania; 
38  g) were used allowing on-board storage of data that 
can be remotely downloaded via the 3G network. Devices 
were programmed to collect GPS fixes at an interval of 
15 min and ACC in 3-dimensions at a frequency of 10 Hz 
over a 3 s burst every 6 min. We also tracked four indi-
vidual breeding seasons from adult males and one indi-
vidual breeding season from an immature bird, which are 
known to not incubate or breed, respectively. They served 
as an additional form of methodological validation, full 

details are provided in additional file 3, but the following 
analysis uses adult female data only.

Incubation classification scheme (Fig. 1)
A set of known successful breeders was identified 
through direct observations of birds with devices on the 
non-breeding grounds. Individual tagged birds could be 
recognised via unique painted codes on the collars, and 
if an individual was associated with a consistent number 
of juveniles over three separate resightings then it was 
deemed to have bred successfully. This is possible as juve-
niles spend at least their first winter in close association 
with their parents and has been verified with molecular 
genetics in the Light-bellied Brent Goose Branta bernicla 
hrota [27].

Due to the breeding biology of the geese there is an 
expectation that during incubation females will remain 
largely stationary and have very low energy expenditure. 
Direct observation of breeding GWfG has found that dur-
ing incubation birds are mostly still or preening on the 
nest with only short recesses, cumulatively amounting to 
no more than 80 min [23]. An example of the movement 
and energy expenditure patterns of a known successful 
breeder can be seen in Additional File 1 (and accessed 
at Ref. [28]). GPS data were used to quantify daily move-
ment patterns and ACC data to calculate overall dynamic 
body acceleration (ODBA), a proxy for energy expendi-
ture [29, 30], for each female goose when in Greenland. 
We used two metrics to describe daily movement pat-
terns, (1) daily median net displacement (ND) and (2) 
the distance between successive median daily locations 
(DDIST). Net displacement is the straight line distance 
between the first fix of the day and all subsequent fixes on 
the same day [31]. For each day we calculated a median 
daily location expressed as median latitude and longitude 
values. These metrics were chosen as they cover move-
ment both within and between days and are relatively 
insensitive to different sampling rates in comparison to 
those that can arise from summing step lengths [18]. The 
metrics were calculated using the amt [32] and geosphere 
[33] packages in R v3.6.3 [34] and all distances measured 
in kilometres were the shortest path between two points 
on an ellipsoid.

From the ACC data we calculated the ODBA for 
each burst, j, across the three axes (x, y and z) using the 
formula:

xi represents the ith component and x̅ the mean of all n 
samples within burst j for the x-axis, and likewise for y 
and z.

ODBAj =

∑n
i=1|xi − x| +

∣

∣yi − y
∣

∣+ |zi − z|

n
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To quantify the variation of ND, DDIST and ODBA val-
ues during periods of incubation and non-incubation the 
data from known breeders (n = 8 individual breeding sea-
sons) were used as a training set for out classification. The 
incubation period for each known breeder was defined as 
the 24 consecutive days with the lowest total of average 
daily ODBA, while the individual was in Greenland as 
this is the likely minimum incubation period required to 
hatch a clutch [23]. A three day buffer on either side of 
the 24 day window was applied to represent uncertainty 

in the exact length of incubation due to individual vari-
ation in the duration required for a clutch to hatch [35]. 
All remaining days, while an individual was in Greenland, 
were designated as non-incubating (Fig. 2). For the incu-
bating and non-incubating days we pooled daily values 
across all known breeders and calculated the 2.5th and 
97.5th quantiles for ND, DDIST and ODBA during incu-
bation and non-incubation. These quantile values were 
used to classify all remaining individuals for which repro-
ductive outcome was undetermined. The classification 

Fig. 1  Flowchart depicting the joint classifier methodology used to classify breeding events from biologging devices collecting GPS and ACC data. 
Training values are calculated from a set of known successful breeders and these are used to create thresholds to identify periods of incubation in 
unknown breeders. The selection of top candidate incubations was only used for re-sampled data sets, not for the validation of the joint classifier
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system (Fig.  1) used the following framework to create 
the joint classifier (a classifier jointly using GPS and ACC 
data):

1.	 Days during the breeding season were scored with a 
2, 1 or 0 for each of ND, DDIST and ODBA. A 2 was 
assigned when the value for the day of interest was 
below the 97.5th quantile of incubation days from 
the training set. A 1 was assigned if the value for the 
day of interest fell in between the 97.5th quantile 
for incubation days and the 2.5th quantile for non-
incubation days regardless of which quantile value 
was lower. A 0 was assigned if the value for the day of 
interest was greater than the 2.5th quantile for non-
incubation days unless the 97.5th quantile for incuba-
tion days was higher, in which case it was assigned 
a 0 if it was above the 97.5th quantile for incubation 
days. A graphical representation of the scoring sys-
tem is shown in Additional file 2: Fig. S2.

2.	 These scores for ND, DDIST and ODBA were added 
together to give a total score anywhere between 0 

and 6. Each day was then classified as incubation if 
it scored a 6, indicating that it was below the 97.5th 
quantile for incubation days from the training set 
across all three metrics.

3.	 Days that scored 2–5 had some support for being 
incubation days but there was still some uncertainty. 
Therefore, if other days nearby had a score of 6 then 
the bird was classified as having started incubation 
and this would increase our confidence that days 
with scores of 2–5 were in fact incubation. Days with 
such a score could be classified as incubation if there 
was a day up to three days ahead or preceding that 
was already originally classified as incubation. This 
essentially allowed gap filling in candidate incuba-
tion periods if there was some support that those 
gap days had low levels of movement and/or energy 
expenditure. A three day window was chosen as it is 
often used for temporal interpolation in remote sens-
ing time series [36, 37]. Longer windows have been 
found to reduce accuracy of the interpolated time 
series [36] and shorter windows, i.e., 1 or 2  days, 

Fig. 2  Average daily ODBA during the breeding season for all GWfG in the training set that were known to have breed successfully. The 24 day 
consecutive period with the lowest total ODBA is assigned as the incubation period, a three day buffer is placed either side and all remaining days 
are assigned as not incubating. At the top of each plot the device code and the year of the breeding season is given
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appeared to occasionally classify incubations shorter 
than 24 days in the birds that were observed to have 
breed successfully on the wintering grounds.

This sometimes resulted in more than one candidate 
period of incubation being identified per individual. This 
only occurred once the data were resampled, when veri-
fying the classifier using the full data set only one period 
of incubation was identified for each individual and these 
all commenced during the known incubation initiation 
period. The following set of criteria were used to select 
the most likely candidate incubation period for resam-
pled data sets:

1.	 Any candidate incubation periods that did not con-
tain any days with the top score (6 in this instance) 
were removed;

2.	 For any remaining candidate incubation periods, the 
one with the highest average daily score was chosen. 
This was calculated by summing the scores for all 
days in the candidate incubation and dividing by the 
number of days. The candidate incubation with the 
highest average daily score had the largest number of 
days with movement and acceleration patterns that 
matched the incubations in the training set.

As part of our test to examine the effect of data streams 
on classifier accuracy, classifiers that used only GPS 
or ACC data were tested. The classifier outlined above 
requires GPS and ACC data so the following alterations 
to the classification rules were made for the single data 
stream classifiers:

GPS‑only classifier

1.	 To identify the incubation period for individuals in 
the training set the ND and DDIST values were both 
rescaled using the rescale function from the arm 
package [38]. The scaled ND and DDIST values were 
summed together and the 24 day consecutive period 
with the lowest total value was chosen as the incu-
bation period. Again a three day buffer was allocated 
either side of this 24 day window and all remaining 
days were non-incubation;

2.	 The same scoring system is implemented as above 
but since there are now only two metrics each day 
can be assigned a score from 0 to 4. The 0–2 for ND 
and 0–2 for DDIST being summed;

3.	 If a day has a score of 4 then it is assigned as incuba-
tion as it was below the 97.5th quantile for incuba-
tion days from the training set for ND and DDIST;

4.	 If a day has a score of 2 or 3 then it can be labelled as 
incubation if there is a day up to three days prior or 

after that is already labelled as incubation from the 
previous step;

5.	 If more than one candidate incubation period was 
identified then the same set of rules as those in the 
joint classifier above were used to pick the period 
most indicative of incubation.

ACC‑only classifier

1.	 The incubation period for known breeders is identi-
fied in the same manner as the combined GPS and 
ACC approach;

2.	 The same scoring system is then implemented as 
above but since there is now only one metric, each 
day can be assigned a score from 0 to 2;

3.	 If a day has a score of 2 then it is assigned as incuba-
tion.

4.	 If a day has a score of 1 then it can only be labelled as 
incubation if there is a day up to three days prior or 
after that is already labelled as incubation from the 
previous step;

5.	 If more than one candidate incubation period was 
identified then the same set of rules as those in the 
joint classifier above were used to pick the period 
most indicative of incubation.

Methodological validation
We validated our classification using the full tracking 
data set. Initially we dropped one individual breeding 
season in turn from the training data set, trained the 
classifier on the remaining individuals and tested it on 
the one excluded individual breeding season. In each 
instance we would expect that our classifier would 
identify an incubation equal to or longer than 24 days 
as this is the minimum duration required to hatch a 
clutch. This served to validate our approach but also 
determine if changing the individuals in the test set 
influenced our classification. We performed additional 
validation (see Additional file  3) on five individual 
breeding seasons, four males and one immature, which 
are both known to not incubate a clutch. Therefore, we 
expect our trained classifier to not identify any days as 
incubating for these four individual breeding seasons.

Sensitivity analysis: the effect of sampling interval
To assess the effect of data resolution we varied the sam-
pling intervals of our biologging data streams and then 
re-ran our three classifiers to determine what effects 
this would have on the classification performance. Three 
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components of our data set could be altered: (1) the inter-
val between GPS fixes; (2) the interval between ACC 
bursts; and (3) the duration of the 10 Hz ACC bursts. We 
varied the GPS interval between 15 and 90 min, the ACC 
burst interval between 6 and 144 min and the duration of 
the burst was 1, 2, or 3 s. Sampling intervals could only be 
increased by increments that were multiples of the original 
sampling intervals (15 min for GPS and 6 min for ACC).

To assess the performance of classification for each 
sampling regime the results were compared to those 
obtained from running the joint classifier with the full 
data set for all individuals not in the training set (refer-
ence incubations). For individuals with unknown breed-
ing status, every day during the breeding period could be 
classified as a true positive (classified as incubation in the 
full data set and resampled data set), true negative (clas-
sified as not-incubation in the full data set and resampled 
data set), false negative (classified as incubation in the full 
data set but non-incubation in resampled data set) or false 
positive (classified as non-incubation in the full data set 
but as incubation in the resampled data set). We then cal-
culated a single precision and recall value for each resam-
pled data set (formulas below), which are commonly used 
in machine learning approaches [39, 40] to assess the per-
formance of the classifier for each resampled data set. In 
addition we performed two other tests to assess the per-
formance of classification: (1) the number of incubations 
identified using the resampled data set, where there was 
no corresponding incubation for that individual breeding 
season in the reference incubation set and; (2) the average 
number of misclassified days (false positive plus false neg-
atives) per individual breeding season for each resampled 
data set with individuals breeding seasons being grouped 
according to the length of the incubation in the reference 
incubation set. We acknowledge that our reference incu-
bations are not 100% accurate and they may deviate from 
the true incubation periods slightly. Small reductions to 
recall and precisions could be due to this deviation but we 
argue that large reductions are suggestive of longer sam-
pling intervals no longer being able to discern incubation 
from other behaviours.

Results
Methodological validation
The joint GPS and ACC classifier using the full data 
set identified 14 individual breeding seasons with no 

Precision =
truepositives

truepostives+ falsepostives

Recall =
truepositives

truepositives+ falsenegatives

incubation, 33 individual breeding seasons that failed 
during incubation and 9 individual breeding seasons 
that likely hatched a clutch (as they incubated for at least 
24 days). No individual breeding seasons were classified 
with more than one candidate incubation period. When 
testing the validity of the classifier on the full data set by 
dropping each individual breeding season sequentially 
from the training set we found that 28  day incubations 
were classified for three individual breeding seasons, 
26  day incubations for four individual breeding seasons 
and a 24 day incubation for one individual breeding sea-
son  (for examples see Fig.  3). These incubations all fell 
in the known duration for successful breeders and were 
all initiated within the known date range for this species 
[23]. In addition we found that four tagged males and one 
immature did not have a single day classified as incubat-
ing, which is expected as male GWfG do not incubate 
the clutch [23] and immatures do not breed (Additional 
file 3).

Sensitivity analysis: the effect of sampling interval
As the sampling interval of GPS fixes and ACC bursts 
increased the precision and recall of the joint classifier 
declined (Fig.  4, Additional file  2: Tables S1–S3). This 
decline was more pronounced when measured in terms 
of precision (Fig.  4A) as opposed to recall (Fig.  4B), 
suggesting our method is more prone to classifying a 
day as incubation when it is actually non-incubation as 
opposed to vice versa. However, even at the maximum 
interval lengths tested for both GPS and ACC data, the 
combined classifier did not fall below a precision of 
0.94. The decline in precision commenced when ACC 
burst interval exceeds 24  min, before this break point 
changing the sampling interval of GPS fixes and ACC 
burst results in almost no change to precision. Preci-
sion appears to vary more with ACC sampling interval 
as opposed to ACC burst length, although the range of 
values over which we could vary burst length was more 
limited. In comparison to the joint classifier, the GPS-
only and ACC-only classifier performed worse in terms 
of precision and recall (Fig. 5, Additional file 2: Tables 
S6–7), although the GPS-only classifier performed sim-
ilarly to the joint classifier in precision when the ACC 
burst interval exceeded 96  min. The GPS-only classi-
fier clearly outperformed the ACC-only classifier in 
terms of precision and recall. The ACC-only classifier 
had a sharp drop off in recall when the burst interval 
exceeded 72 min. The DDIST metric used in the GPS-
only classifier was able to discriminate clearly between 
incubation and non-incubation days across all GPS 
sampling rates (Additional file 2: Fig. S2).

When assessing the performance of our joint classi-
fier in terms of whether it failed to identify reference 
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incubations or added extra incubations (compared to 
the reference incubations) at longer sampling intervals, 
we found that only one reference incubation (two days 
in duration) was missed at ACC sampling rates > 72 min. 
Three individuals assigned to breeding deferral (no 
incubation days) in the reference incubations, were 
assigned incubation days under longer sampling inter-
vals (Fig. 6, Additional file 2: Table S4). In two individu-
als this occurred when ACC sampling interval > 72  min 
or GPS sampling interval > 75  min. In the third individ-
ual, a two day incubation period was identified across a 
variety of sampling rates. Both single data-stream clas-
sifiers assigned incubations that were not identified by 
the joint classifier with the highest resolution data set 
(Fig.  6). The GPS-only classifier classified an incubation 
event in 6–8% of individual breeding seasons when no 
corresponding incubation was identified in the full data 
set. The ACC-only classifier assigned non-corresponding 
incubations in 6–8% of individual breeding seasons when 
the sampling interval was below 24 min, rising to 19–24% 
of individual breeding seasons when the sampling inter-
val exceeded 72 min. For both single data-stream classifi-
ers the occurrence of multiple candidate incubations per 
individual increased as the sampling interval increased. 
For the GPS-only classifier, additional candidate incuba-
tions were often identified during the main moult period 

(after 1st July) but were removed by the classifier when 
selecting the top candidate incubation period. If the sam-
pling interval exceeded 48 min then the ACC-only clas-
sifier had to consider multiple candidate incubation for 
almost all individuals. Often two candidate periods of 
incubation were separated by a one to three day gap of 
non-incubation. In the reference incubations both of the 
incubation periods and the gap were identified as a single 
incubation period so a non-incubation gap in the middle 
had been wrongly detected by the ACC only classifier.

How the accuracy of the classifier varied over different 
incubation lengths (from the reference incubations) was 
also examined (Fig.  7, Additional File 2: Table  S5). We 
assigned each individual breeding season to one of the fol-
lowing categories according to the classification in the ref-
erence incubations; deferral (0 days), 1–5 days, 6–10 days, 
11–24 days and hatched (> 24 days). The rates of misclas-
sification were similar across all of the categories (Fig. 7) 
but were perhaps highest for the deferral category.

The quantile values for ND, DDIST and ODBA that were 
used in the classifier at each sampling rate can be found in 
Additional file 2: Fig. S2). The mean values of these metrics 
varied little with sampling rate, but we do observe increases 
in the inter-quantile range for incubating and non-incubat-
ing days as sampling intervals increased and at large inter-
vals the inter-quantile ranges began to overlap.

Fig. 3  Incubation periods identified by our joint classifier for three individuals in the test data set during methodological validation
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Discussion
Our approach utilises GPS and ACC data to recon-
struct avian breeding events with daily resolution and 
our rule-based classification model was verified using 
a validation set of known breeders [41]. This improves 
on the resolution of many previous approaches to clas-
sify breeding patterns in birds [9–11] and is at least 
comparable to the resolution achieved by Schreven 
et  al. [16]. We then tested how the accuracy of breed-
ing event classification is affected by collecting GPS 
and ACC data in combination and isolation while vary-
ing the sampling intervals. There were declines in the 

precision and recall of classification as the sampling 
interval increased and GPS data in isolation seemed 
to outperform ACC data in isolation. Collecting ACC 
bursts at intervals shorter than 24  min and GPS fixes 
shorter than 60  min combined, produced only minor 
improvements to precision.

Our approach and that of Schreven et  al. [16] offer 
improvement over previous efforts [9, 10] in being able 
to identify short breeding attempts (less than three days) 
which allows a distinction to be made between breeding 
deferral and early nest failure. We build on these recent 
developments by providing guidance in terms of data 

Fig. 4  Precison and recall of a classifier using GPS and ACC data to determine incubation lengths. The interval between each GPS fix and ACC burst 
was varied along with the duration of each ACC burst. The precision (a) and recall (b) of each resampled data set was compared to the output from 
the classifer when using the full data set (GPS fix every 15 min and a 3 s ACC burst every 6 min). For the precison plot a break point (black dashed 
line) is marked, where the ODBA sampling interval is 24 min



Page 10 of 15Ozsanlav‑Harris et al. Animal Biotelemetry           (2022) 10:24 

requirements, classifier automation and a simpler imple-
mentation. GPS and ACC data can be used in isolation 
with only a few minor changes to our classification. The 
classifier itself does not require any statistical models 
making it easier for conservation practitioners to imple-
ment and interpret. Classification is accomplished via 
a series of thresholds that are calculated automatically 
from the training set. This automation allowed resam-
pling of our biologging data and application of the classi-
fier on numerous sampling interval combinations.

Decreasing the temporal resolution of the data resulted 
in non-linear decreases in the precision and recall of the 
classifier when identifying breeding events. Declines 
in precision were much larger in comparison to recall 
suggesting there is a tendency to classify non-incubat-
ing days as incubating as opposed to vice versa. This is 
likely due to the static nature of females during incuba-
tion being confused with similar lack of movement that 
might be expected during roosting or low mobility moult 
periods. The high resolution at which we originally col-
lected our data is not required to achieve precision and 

recall > 98%. For instance, a GPS fix interval of 60  min 
and a 1  s ACC burst every 48  min give precision and 
recall above 98.5% but a data set less than 5% of the origi-
nal size. This would result in reduced risk of draining bat-
tery power as less data would have to be created, written 
to memory and then possibly sent via remote download.

GPS-only and ACC-only classifiers have utility in iden-
tifying incubation events but care needs to be taken if 
there are other extended periods of low movement in the 
annual cycle when choosing sampling regimes. Accu-
racy of the GPS classifier remained high across all sam-
pling intervals but periods of flightless moult began to 
be assigned as candidate incubations at longer sampling 
intervals. However, candidate incubations during the 
moult period generally had low average daily scores so 
were not selected as the ‘top incubation’ and, therefore, 
precision and recall remained comparable to the joint 
classifier. For the ACC-only classifiers, a burst interval 
greater than 48 min caused low recall and precision, and 
large numbers of candidate incubation periods. When 
this sampling interval was exceeded, activities such as 

Fig. 5  Precison and recall of classifiers using a single biologging data stream, to identify incubation periods. These single data-streams are 
compared to a classifier that uses both GPS and ACC across a variety of different sampling intervals
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recesses and preening likely became disproportionately 
represented in the daily average ODBA values causing 
false negatives and lowering recall. Periods of low move-
ment during moult were also incorrectly classified as 
incubation causing false positives and lowering precision. 
For many bird species moult does not entail an extended 
flightless periods, e.g., most birds of prey [42], and in 
these instances daily movement would be less impacted 
and we would expect easier separation between incuba-
tion and feather moult periods. Overall fewer GPS fixes 
than ACC bursts were required to achieve comparable 
accuracy in our single data stream classifiers but GPS 
data are much more battery intensive to collect and ACC 
generally creates more data which is then more battery 
intensive to send remotely. When also factoring in the 
weight of GPS and ACC sensors the choice between the 
two data streams needs careful consideration.

Using biologging data to identify breeding events in 
birds and subsequently calculate daily nest survival has 
benefits even when direct nest observation is possible. 

The devices allow for 24-h monitoring of individuals, 
providing a number of advantages over observational 
approaches: (1) individuals can be monitored in remote 
regions, where directly finding nests is not possible, 
which may be particularly useful for migrants that 
are readily caught in non-breeding ranges and can be 
tracked to remote breeding grounds (e.g., geese, wad-
ers and ducks breeding in remote Arctic regions but 
readily caught on non-breeding grounds at lower lati-
tudes in America, Europe and east Asia); (2) biologging 
provides the opportunity to identify breeding defer-
ral, because individuals instead of nests are monitored 
which, can be important to measure to understand 
drivers breeding success in a number of groups which 
regularly defer breeding, e.g., ducks [43], gulls [44] and 
terns [45]; (3) individuals are tracked year-round, giv-
ing detail on movements prior to the breeding season 
and allowing an assessment of how carry-over effects 
such as pre-breeding season site choice and migratory 
phenology affect breeding outcomes and (4) a sample 

Fig. 6  Number of additional erroneous incubations that were identified at various sampling regimes but were not identified in the data set with 
the highest resolution. The classifier which used GPS and ACC data is compared to classifier that only used GPS or ACC data
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of nests are monitored with biologging that are unbi-
ased in relation to habitat and location which can 
influence nest detectability [46] and ultimately lead to 
biased estimates of nest survival or density [47]. Direct 
observational approaches often miss nests that fail dur-
ing the first few days of incubation and the exact failure 
date is often unknown and has to be approximated to 
the period between the final two observations. There 
are statistical approaches that can address these short-
comings [48–50] but ultimately still inflate variances in 
daily nest survival estimates [51].

Continuing technological advancements to reduce 
device size [52] will almost certainly allow our approach 
to be applied to a wider range of bird species in the near 
future. Although the need for joint GPS and ACC data 
at reasonably high temporal resolutions likely prevents 
our approach being applied to small and mid-sized pas-
serines. As of 2022 there are 9  g devices available with 
GPS and ACC capabilities which, could be attached on 

birds > 450  g, e.g., Eurasian Oystercatcher Haematopus 
ostralegus (if using a 2% of body mass rule [17]). There 
are number of life-history traits that our approach lends 
itself too. First, it requires species that breed in rela-
tively open habitats, e.g., grassland, savannah and scrub, 
although GPS signal can still be acquired in forests [53]. 
Burrow or cavity nesting species are unlikely to achieve 
GPS signal when on the nest and other devices that mon-
itor light, e.g., geolocators, are likely more appropriate to 
monitor incubation [54]. Second, it requires species with 
single parent incubations strategies or regular switching 
between parents. Species where the parents take multi 
day foraging trips, e.g., Procellariiformes seabirds, will 
provide poor estimates of nest survival due to the large 
window nest failure could have occurred within. Third, 
similar recess and movement patterns during incuba-
tion to GWfG studied here are required to make full use 
of our sensitivity analysis. Longer and more frequent 
recesses will decrease the distinctiveness of incubation 

Fig. 7  Number of days misclassified per individual at different sampling intervals in comparison to a classier using the full reference data set of a 
GPS fix every 15 min and a 3 s ACC burst every 6 min. This has been split up into different lengths of incubation identified in the reference sample 
with the splits being chosen to keep the number of bird years in each group relatively even
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compared to other behaviours and likely require higher 
resolution data to distinguish, fewer shorter recesses will 
likely have the opposite effect. For bi-parentally incubat-
ing species, where only one parent is tagged, the point of 
nest failure will be uncertain as nest failure may occur, 
while the other parent is incubating. In these instances 
the nest failure point can be modelled as a window rather 
than a fixed point within a ‘time-to-event’ type nest sur-
vival model. Finally, it requires species, where informed 
decision on the movement and ODBA thresholds can 
be made. This requires species, where successful breed-
ing can be determined post-breeding, like in our case, or 
where a small group of individuals with devices can be 
monitored during breeding to create a training data set. 
If this is not possible then studies on waterfowl could use 
similar threshold values to the ones we use here.

Conclusions
We classified incubation events with near daily resolution 
and resampled the tracking data showing that a classifier 
using GPS and ACC data had the highest accuracy followed 
by GPS-only and ACC-only classifiers. Our study will guide 
other researchers in optimising methodologies and the 
duty cycles of devices when determining breeding status in 
birds [10, 16]. Nearly all birds actively incubate a clutch of 
eggs, but there are differences in nest recess patterns and 
parental incubation strategies between species. We argue 
our approach is sufficiently generalizable and requires data 
sets much smaller than the one we collected (< 95%) to be 
applicable across a range of birds. If a group of individu-
als can be tracked then it will provide unbiased estimates 
of avian nest survival and serve as a practical alternative to 
direct observational approaches. The derived estimates of 
nest survival are a vital component in demographic model-
ling and assessing avian conservation strategies.
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DDIST: Distance between successive median daily locations.
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Additional file 1: Animation depicting movement and energy expendi‑
ture of a successful breeder. Figure S1. Average daily energy expenditure, 
measured in ODBA, and a movement animation during the breeding 
season of an adult female Greenland white-fronted goose that was known 
to have breed successfully. In the left hand plot a purple line represent 
the incubation period and an orange line represent none incubation 
periods. Both the graph and animation run over the same period of time 
in summer 2018. The video can also be accessed at: https://​youtu.​be/​
ZIc38​0VppDM. 

Additional file 2: Additional plots and tables to support results section. 
Figure S2. Quantile values from training data. Quantile values extracted 
from the training set of known breeders for incubation and non-incuba‑
tion days during the breeding season. The daily values were pooled across 
all individuals and the 97.5th and 2.5th quantiles calculated for incubation 
and non-incubation days. The classification and scores in brackets relate 
to how individuals with unknown breeding status were scored in the 
classifier. Table S1. Precision and recall values: joint classifier 3s burst. The 
precision and recall values when classifying avian incubation events using 
a joint classifier across a variety of sampling schedules for accelerometer 
data (ODBA interval) and GPS data (GPS interval). The results are shown 
for a 3 s accelerometer burst. Darker shading indicates larger values and, 
therefore, a more accurate classification. Table S2. Precision and recall 
values: joint classifier 2s burst. The precision and recall values when clas‑
sifying avian incubation events using a joint classifier across a variety of 
sampling schedules for accelerometer data (ODBA interval) and GPS data 
(GPS interval). The results are shown for a 2 s accelerometer burst. Darker 
shading indicates larger values and, therefore, a more accurate classifica‑
tion. Table S3. Precision and recall values: joint classifier 1s burst. The 
precision and recall values when classifying avian incubation events using 
a joint classifier across a variety of sampling schedules for accelerometer 
data (ODBA interval) and GPS data (GPS interval). The results are shown 
for a 1 s accelerometer burst. Darker shading indicates larger values and, 
therefore, a more accurate classification. Table S4. Additional incubation 
form joint classifier. The number of additional incubation classified, in 
comparison to the reference incubations, using a joint classifier across a 
variety of sampling schedules for accelerometer data (ODBA interval) and 
GPS data (GPS interval). The results are shown for a 3, 2 and 1 s accelerom‑
eter bursts. Darker shading indicates larger values and, therefore, a more 
additional incubations. Table S5. Average days misclassified. The average 
number of days misclassified per individual breeding season, in compari‑
son to the reference incubations, using a joint classifier across a variety of 
sampling schedules for accelerometer data (ODBA interval) and GPS data 
(GPS interval). The results are grouped by the outcome of the individual 
breeding season in the reference sample, i.e., ‘1–5 days’ is a 1–5 day incu‑
bation in the reference sample. Darker shading indicates larger values and, 
therefore, a greater misclassification rate. Table S6. Precision and recall 
GPS only classifier. The precision and recall values when classifying avian 
incubation events using a GPS only classifier across a variety of sampling 
schedules for the GPS data (GPS interval). Darker shading indicates larger 
values and, therefore, a more accurate classification. Table S7. Precision 
and recall ACC only classifier. The precision and recall values when classify‑
ing avian incubation events using an Accelerometer only classifier across 
a variety of sampling schedules for the ODBA data (ODBA interval) and 
length of the accelerometer burst (Burst length). Darker shading indicates 
larger values and, therefore, a more accurate classification. 

Additional file 3: Validating the methodology using males and immature 
birds. Figure S5. Breeding classifications of male and immature GWfG dur‑
ing the breeding season plotted against the average daily ODBA values. 
The dashed line represents the 95th quantile of average daily ODBA values 
for incubating days, determined using a set of known breeders. Below 
this value days are given a score of 2 (see main text). (PIFO47, UCOL35, 
UCOL37 and UCOL40 are males. 17812 was an immature). Figure S6. 
Breeding classifications of male and immature GWfG during the breeding 
season plotted against the distance between successive median daily 
locations (DDIST). The dashed line represents the 95th quantile of DDIST 
values for incubating days, determined using a set of known breeders. 
Below this value days are given a score of 2 (see main text). (PIFO47, 
UCOL35, UCOL37 and UCOL40 are males. 17812 was an immature). 
Figure S7. Breeding classifications of male and immature GWfG during 
the breeding season plotted against daily median net squared displace‑
ment (ND). The dashed line represents the 5th quantile of ND values for 
not incubating days, determined using a set of known breeders. Below 
this value days are given a score of 2 (see main text). (PIFO47, UCOL35, 
UCOL37 and UCOL40 are males. 17812 was an immature) 

Additional file 4: BTO permit. Permit for catching, handling and attaching 
the biologging devices used in this study onto Greenland White-fronted 
Geese

https://doi.org/10.1186/s40317-022-00298-8
https://doi.org/10.1186/s40317-022-00298-8
https://youtu.be/ZIc380VppDM
https://youtu.be/ZIc380VppDM


Page 14 of 15Ozsanlav‑Harris et al. Animal Biotelemetry           (2022) 10:24 

Acknowledgements
We acknowledge and thank all those that helped with the deployment of the 
biologging devices, in particular Alyn Walsh, Carl Mitchell, Ed Burrell, Stephanie 
Cunningham, Toryn Schafer, Tony Fox and staff at Islay RSPB reserves. We thank 
all the numerous land owners that kindly allowed us to catch geese on their 
land.

Author contributions
LOH, GH, LG and SB conceived the idea for the paper and the methodology 
for the classifier. LOH carried out the analysis. LG lead the deployment of 
biologging devices with assistance from LOH/SB and coordinated by MW. LG 
and LOH resighted tagged birds to identify successful breeders. LOH wrote the 
manuscript. All the authors read and approved the final manuscript.

Funding
Funding for the biologging devices was provided by Lei Cao at the Chinese 
Academy of Sciences and Wildfowl and Wetlands Trust. Co-authors from these 
funding bodies only edited the manuscript in a scientific manner and did not 
influence interpretation of the results.

Availability of data and materials
The training data set values and R code generated during the current study 
are available on figshare here; https://​doi.​org/​10.​6084/​m9.​figsh​are.​20443​929 
and in a GitHub repository here; https://​github.​com/​LukeO​zsanl​av/​Anima​
lBioM​ethods. The GPS data sets generated during and/or analysed during 
the current study are not publicly available as they pertain to the locations of 
an endangered species but are available from the corresponding author on 
reasonable request.

Declarations

Ethics approval and consent to participate
Capture and handling of the geese and deployment of biologging devices 
was permitted through the Icelandic Institute of Natural History and British 
Trust for Ornithology (permit number: /A/5436, Additional File 4), as well as 
being approved by the ethical committee at the University of Exeter (Applica‑
tion number: eCORN002260).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Centre for Ecology and Conservation, College of Life and Environmental Sci‑
ences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9EZ, UK. 
2 Wildfowl & Wetlands Trust, Slimbridge, Gloucester GL2 7BT, UK. 3 ECO-LG Ltd, 
Crooks House, Mabie, Dumfries, Dumfries and Galloway DG2 8EY, UK. 4 Depart‑
ment of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada. 
5 State Key Laboratory of Urban and Regional Ecology, Research Centre 
for Eco‑Environmental Sciences, Chinese Academy of Sciences, Beijing, China. 

Received: 25 March 2022   Accepted: 29 July 2022

References
	1.	 Votier SC, Fayet AL, Bearhop S, Bodey TW, Clark BL, Grecian J, et al. Effects 

of age and reproductive status on individual foraging site fidelity in a 
long-lived marine predator. Proc R Soc B Biol Sci. 2017;284:6.

	2.	 Bennison A, Bearhop S, Bodey TW, Votier SC, Grecian WJ, Wakefield ED, 
et al. Search and foraging behaviors from movement data: a compari‑
son of methods. Ecol Evol. 2018;8:13–24.

	3.	 Bidder OR, Walker JS, Jones MW, Holton MD, Urge P, Scantlebury DM, 
et al. Step by step: reconstruction of terrestrial animal movement paths 
by dead-reckoning. Mov Ecol Mov Ecol. 2015;3:1–16.

	4.	 Flack A, Nagy M, Fiedler W, Couzin I, Wikelski M. From local collec‑
tive behavior to global migratory patterns in white storks. Science. 
2018;360:911–4.

	5.	 Loonstra AHJ, Verhoeven MA, Senner NR, Both C, Piersma T. Adverse 
wind conditions during northward Sahara crossings increase the in-
flight mortality of Black-tailed Godwits. Ecol Lett. 2019;22:2060–6.

	6.	 Sergio F, Tavecchia G, Tanferna A, Blas J, Blanco G, Hiraldo F. When and 
where mortality occurs throughout the annual cycle changes with 
age in a migratory bird: individual vs population implications. Sci Rep. 
2019;9:1–8.

	7.	 Gow EA, Knight SM, Bradley DW, Clark RG, Winkler DW, Bélisle M, et al. 
Effects of spring migration distance on tree swallow reproductive suc‑
cess within and among flyways. Front Ecol Evol. 2019;7:1–10.

	8.	 Chimienti M, van Beest FM, Beumer LT, Desforges JP, Hansen LH, 
Stelvig M, Schmidt NM. Quantifying behavior and life-history events 
of an Arctic ungulate from year-long continuous accelerometer data. 
Ecosphere. 2021;12:1–17.

	9.	 De Boer R, Bauer S, Van Der Jeugd HP, Ens BJ, Griffin L, Cabot D, et al. 
A comparison of spring migration between three populations of Bar‑
nacle Geese Branta leucopsis using GPS satellite transmitters. Limosa. 
2014;87:99–106.

	10.	 Kölzsch A, Müskens GJDM, Szinai P, Moonen S, Glazov P, Kruckenberg 
H, et al. Flyway connectivity and exchange primarily driven by moult 
migration in geese. Mov Ecol Mov Ecol. 2019;7:1–11.

	11.	 Picardi S, Smith BJ, Boone ME, Frederick PC, Cecere JG, Rubolini D, 
et al. Analysis of movement recursions to detect reproductive events 
and estimate their fate in central place foragers. Mov Ecol Mov Ecol. 
2020;8:1–14.

	12.	 Souchay G, Gauthier G, Pradel R. To breed or not: a novel approach to 
estimate breeding propensity and potential trade-offs in an Arctic-
nesting species. Ecology. 2014;95:2723–35.

	13.	 Reed TE, Harris MP, Wanless S. Skipped breeding in common guil‑
lemots in a changing climate: restraint or constraint? Front Ecol Evol. 
2015;3:1–13.

	14.	 Peery MZ, Beissinger SR, Newman SH, Burkett EB, Williams TD. Applying 
the declining population paradigm: diagnosing causes of poor reproduc‑
tion in the Marbled Murrelet. Conserv Biol. 2004;18:1088–98.

	15.	 Maslo B, Schlacher TA, Weston MA, Huijbers CM, Anderson C, Gilby BL, 
et al. Regional drivers of clutch loss reveal important trade-offs for beach-
nesting birds. PeerJ. 2016;2016:1–23.

	16.	 Schreven KHT, Stolz C, Madsen J, Nolet BA. Nesting attempts and success 
of Arctic-breeding geese can be derived with high precision from accel‑
erometry and GPS-tracking. Anim Biotelemetry. 2021;9:1–13.

	17.	 Bodey TW, Cleasby IR, Bell F, Parr N, Schultz A, Votier SC, et al. A phyloge‑
netically controlled meta-analysis of biologging device effects on birds: 
deleterious effects and a call for more standardized reporting of study 
data. Methods Ecol Evol. 2018;9:946–55.

	18.	 Noonan MJ, Fleming CH, Akre TS, Drescher-lehman J, Gurarie E, Kays R, 
et al. Scale-free estimation of speed and distance traveled from animal 
tracking data. Mov Ecol Mov Ecol. 2019;7:1–15.

	19.	 Quick NJ, Cioffi WR, Shearer J, Read AJ. Mind the gap—optimizing 
satellite tag settings for time series analysis of foraging dives in Cuvier’s 
beaked whales (Ziphius cavirostris). Anim Biotelemetry. 2019;7:1–14.

	20.	 Fleming CH, Calabrese JM, Mueller T, Olson KA, Leimgruber P, Fagan WF. 
From fine-scale foraging to home ranges: a semivariance approach to 
identifying movement modes across spatiotemporal scales. Am Nat. 
2014;183:E154.

	21.	 Mitchell LJ, White PCL, Arnold KE. The trade-off between fix rate and 
tracking duration on estimates of home range size and habitat selection 
for small vertebrates. PLoS ONE. 2019;14:1–20.

	22.	 Noonan MJ, Tucker MA, Fleming CH, Akre TS, Alberts SC, Ali AH, et al. 
A comprehensive analysis of autocorrelation and bias in home range 
estimation. Ecol Monogr. 2019;89:1–21.

	23.	 Stroud DA. Observations on the incubation and post-hatching behaviour 
of the Greenland White-fronted Goose. Wildfowl. 1982;33:63–72.

	24.	 Fox AD. Greenland White-fronted Goose Anser albifrons flavirostris The 
annual cycle of a migratory herbivore on the European continental 
fringe. PhD disseration. 2002.

https://doi.org/10.6084/m9.figshare.20443929
https://github.com/LukeOzsanlav/AnimalBioMethods
https://github.com/LukeOzsanlav/AnimalBioMethods


Page 15 of 15Ozsanlav‑Harris et al. Animal Biotelemetry           (2022) 10:24 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	25.	 Fox AD, Stroud DA. The breeding biology of the Greenland White-fronted 
Goose (Anser albifrons flavirostris). Medd Gronl Biosci. 1988;27:1–14.

	26.	 Weegman MD, Bearhop S, Hilton GM, Walsh AJ, Weegman KM, Hodgson 
DJ, et al. should i stay or should i go? Fitness costs and benefits of 
prolonged parent–offspring and sibling–sibling associations in an Arctic-
nesting goose population. Oecologia. 2016;181:809–17.

	27.	 Harrison XA, Tregenza T, Inger R, Colhoun K, Dawson DA, Gudmundsson 
GA, et al. Cultural inheritance drives site fidelity and migratory connectiv‑
ity in a long-distance migrant. Mol Ecol. 2010;19:5484–96.

	28.	 Successful breeding attempt of a female Greenland White-fronted Goose. 
https://​youtu.​be/​ZIc38​0VppDM. Accessed 25 Mar 2021.

	29.	 Gleiss AC, Wilson RP, Shepard ELC. Making overall dynamic body accelera‑
tion work: on the theory of acceleration as a proxy for energy expendi‑
ture. Methods Ecol Evol. 2011;2:23–33.

	30.	 Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard ELC, et al. 
Tri-axial dynamic acceleration as a proxy for animal energy expenditure; 
should we be summing values or calculating the vector? PLoS ONE. 
2012;7:e31187.

	31.	 Singh NJ, Allen AM, Ericon G. Quantifying migration behaviour using net 
squared displacement approach: clarifications and caveats. PLoS ONE. 
2016;11:1–20.

	32.	 Signer J, Fieberg J, Avgar T. Animal movement tools (amt): R package for 
managing tracking data and conducting habitat selection analyses. Ecol 
Evol. 2019;9:880–90.

	33.	 Hijmans RJ. geosphere: Spherical trigonometry. R Packag version 15–10. 
2019.

	34.	 R Core Team. R: A language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing; 2020. https://​
www.r-​proje​ct.​org/. Accessed 08 Aug 2022.

	35.	 Gillette SM, Klehr AL, Murphy MT. Variation in incubation length and 
hatching asynchrony in Eastern Kingbirds: weather eclipses female 
effects. Ornithology. 2021;138:1–15.

	36.	 Parajka J, Blöschl G. Spatio-temporal combination of MODIS images—
potential for snow cover mapping. Water Resour Res. 2008;44:1–13.

	37.	 Marchane A, Jarlan L, Hanich L, Boudhar A, Gascoin S, Tavernier A, et al. 
Assessment of daily MODIS snow cover products to monitor snow cover 
dynamics over the Moroccan Atlas mountain range. Remote Sens Envi‑
ron. 2015;160:72–86.

	38.	 Gelman A, Su Y-S. arm: Data analysis using regression and multilevel/hier‑
archical models. R Packag version 111–1. 2020.

	39.	 Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz WM. Using 
tri-axial acceleration data to identify behavioral modes of free-ranging 
animals: general concepts and tools illustrated for griffon vultures. J Exp 
Biol. 2012;215:986–96.

	40.	 Collins PM, Green JA, Warwick-Evans V, Dodd S, Shaw PJA, Arnould JPY, 
et al. Interpreting behaviors from accelerometry: a method combining 
simplicity and objectivity. Ecol Evol. 2015;5:4642–54.

	41.	 Buderman FE, Gingery TM, Diefenbach DR, Gigliotti LC, Begley-Miller D, 
McDill MM, et al. Caution is warranted when using animal space-use and 
movement to infer behavioral states. Mov Ecol Mov Ecol. 2021;9:1–12.

	42.	 Zuberogoitia I, Zabala J, Martínez JE. Moult in birds of prey: a review 
of current knowledge and future challenges for research. Ardeola. 
2018;65:183–207.

	43.	 Hansen WK, Bate LJ, Landry DW, Chastel O, Parenteau C, Breuner CW. 
Feather and faecal corticosterone concentrations predict future repro‑
ductive decisions in harlequin ducks (Histrionicus histrionicus). Conserv 
Physiol. 2016;4:1–10.

	44.	 MacLean AAE. Age-specific foraging ability and the evolution of deferred 
breeding in three species of gulls. Wildl Soc Bull. 1986;98:267–79.

	45.	 Ratcliffe N, Hughes J, Roberts FA. The population status of sooty terns 
Sterna fuscata on Ascension Island. Atl Seabirds. 1999;1:159–68.

	46.	 Barr JR, Green MC, DeMaso SJ, Hardy TB. Detectability and visibility biases 
associated with using a consumer-grade unmanned aircraft to survey 
nesting colonial waterbirds. J Field Ornithol. 2018;89:242–57.

	47.	 Giovanni MD, Van Der Burg MP, Anderson LC, Powell LA, Schacht WH, Tyre 
AJ. Estimating nest density when detectability is incomplete: variation in 
nest attendance and response to disturbance by western meadowlarks. 
Condor. 2011;113:223–32.

	48.	 Hazler KR. Mayfield logistic regression: a practical approach for analysis of 
nest survival. Auk. 2004;121:707–16.

	49.	 Jehle G, Yackel Adams AA, Savidge JA, Skagen SK. Nest survival 
estimation: a review of alternatives to the mayfield estimator. Condor. 
2004;106:472–84.

	50.	 Blomberg EJ, Gibson D, Sedinger JS. Biases in nest survival associated 
with choice of exposure period: a case study in North American upland 
game birds. Condor. 2015;117:577–88.

	51.	 Weiser EL. Fully accounting for nest age reduces bias when quantifying 
nest survival. Ornithol Appl. 2021;123:1–23.

	52.	 Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an 
eye on life and planet. Science. 2015;348:1222.

	53.	 Bastos AS, Hasegawa H. Behavior of GPS signal interruption probability 
under tree canopies in different forest conditions. Eur J Remote Sens. 
2013;46:613–22.

	54.	 Huang X, Zhao Y, Liu Y. Using light-level geolocations to monitor incuba‑
tion behaviour of a cavity-nesting bird Apus apus pekinensis. Avian Res. 
2021;12:1–6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://youtu.be/ZIc380VppDM
https://www.r-project.org/
https://www.r-project.org/

	Wearable reproductive trackers: quantifying a key life history event remotely
	Abstract 
	Background
	Methods
	Study system
	Device deployment and sampling schedules
	Incubation classification scheme (Fig. 1)
	GPS-only classifier
	ACC-only classifier

	Methodological validation
	Sensitivity analysis: the effect of sampling interval

	Results
	Methodological validation
	Sensitivity analysis: the effect of sampling interval

	Discussion
	Conclusions
	Acknowledgements
	References




