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Abstract 

Background: In acoustic telemetry studies, detection range is usually evaluated as the relationship between the 
probability of detecting an individual transmission and the distance between the transmitter and receiver. When 
investigating animal presence, however, few detections will suffice to establish an animal’s presence within a certain 
time frame. In this study, we assess detection range and its impacting factors with a novel approach aimed towards 
studies making use of binary presence/absence metrics. The probability of determining presence of an acoustic 
transmitter within a certain time frame is calculated as the probability of detecting a set minimum number of trans‑
missions within that time frame. We illustrate this method for hourly and daily time bins with an extensive empirical 
dataset of sentinel transmissions and detections in a receiver array in a Belgian offshore wind farm.

Results: The accuracy and specificity of over 84% for both temporal resolutions showed the developed approach 
performs adequately. Using this approach, we found important differences in the predictive performance of distinct 
hypothetical range testing scenarios. Finally, our results demonstrated that the probability of determining presence 
over distance to a receiver did not solely depend on environmental and technical conditions, but would also relate to 
the temporal resolution of the analysis, the programmed transmitting interval and the movement behaviour of the 
tagged animal. The probability of determining presence differed distinctly from a single transmission’s detectability, 
with an increase of up to 266 m for the estimated distance at 50% detection probability (D50).

Conclusion: When few detections of multiple transmissions suffice to ascertain presence within a time bin, pre‑
dicted range differs distinctly from the probability of detecting a single transmission within that time bin. We recom‑
mend the use of more rigorous range testing methodologies for acoustic telemetry applications where the assess‑
ment of detection range is an integral part of the study design, the data analysis and the interpretation of results.
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Background
Understanding performance variability of scientific 
equipment is crucial to correctly interpret patterns in 
its measurements. In acoustic telemetry, this entails 
the assessment of the detectability of animal-borne 
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transmitter signals by an acoustic receiver set-up [1]. This 
relationship is subject to the transmitter–receiver dis-
tance, environmental conditions and technical features, 
in addition to the behaviour of the tagged animal itself. 
Environmental impacts include static features, such as 
habitat type and bottom depth [2, 3], as well as system 
dynamics that vary over time, such as wind, water cur-
rents, precipitation, biogenic and anthropogenic noise, 
temperature and stratification [4–6]. The detection range 
can also be dependent on the specifications of the equip-
ment used, including transmitter type, transmitting 
power output and transmitter placement [7–9], as well 
as receiver depth, orientation and deployment method 
[5, 10, 11]. Biofouling on the receiver can significantly 
decrease receiver performance over time [12]. The tagged 
animal’s behaviour can influence the detectability, e.g. 
through the occupancy of a specific depth or a propen-
sity to hide or burrow [13, 14]. Spatiotemporal variability 
in detection range is commonly investigated with a range 
test [1, 4, 5], where these patterns are evaluated against 
a relevant subset of factors of potential interference to 
transmissions.

Whether to optimize the design of a receiver array or 
to account for variability in detection probability during 
a study, a range test must be tailored to a study’s specific 
application [1, 15, 16]. Before and/or during a telem-
etry study, the detection range is generally evaluated 
by means of sentinel transmitters at a known, generally 
fixed, position. Detection range is then typically assessed 
as the probability of detecting a single transmission at the 
known distance between receiver and transmitter. This 
individual detection probability is estimated either for 
every single transmission [3, 10, 17], or as the probability 
of detecting a single transmission within a period of time 
(e.g. for a daily resolution, this represents the probability 
of detecting a transmission given that day’s conditions) 
[5, 6, 18]. However, many telemetry analyses do not build 
on single detections as a response variable, but rely on a 
binary presence/absence metric within a specified time 
bin (e.g. residency) [19–21]. For these studies, one detec-
tion (or at most a few) within a period of time, gener-
ally one hour or day, will suffice to classify the animal as 
present in that time bin. The probability of determining 
presence, i.e. detecting at least one or a few transmit-
ted signals within a period of time, thus differs distinctly 
from the probability of detecting a single transmission 
[22].

For studies investigating presence of a tagged animal 
within a specified time bin, the assessment of range has 
to take into account the temporal resolution of interest. 
Environmental variables may impact detection range 
differently on distinct temporal scales [23]. The effect of 
tidal currents for example, can differ between hourly and 

daily resolutions. Moreover, the probability of determin-
ing presence of a tagged animal will increase if multiple 
transmissions can be detected. The number of poten-
tially detectable transmissions is related to the chosen 
time bin and the transmitting interval settings, as well as 
the behaviour of the animal itself. A larger time bin and 
shorter transmitting interval result in a higher number of 
transmissions that can be detected by a receiver and thus 
in a higher probability that a fish is effectively observed 
as present within the specified time bin. Fish movement 
behaviour will also influence the probability of determin-
ing presence. An animal passing by a receiver location 
is expected to spend less time within range of a receiver 
than an animal that resides at that location. Telemetry 
researchers already adapt transmitter settings in line with 
the expectations of residency and movement behaviour 
to increase the detection probability (e.g. a shorter trans-
mitting interval during the expected migration along 
a receiver curtain) [15] or reduce the risk of collisions 
[24]. However, assumptions on movement behaviour are 
rarely taken into account explicitly in detection range 
assessments.

In this study, we propose an approach to assess factors 
that impact the detection range, suitable for studies mak-
ing use of binary presence/absence metrics. Our con-
ceptual approach builds on the detection probability of a 
single transmission within a certain time frame to calcu-
late the probability of detecting a given minimum num-
ber of transmissions within that time frame. The method 
can be applied to any receiver array equipped with sen-
tinel transmitters. When investigating the probability of 
determining the presence of a tagged animal, the number 
of potentially detectable transmissions is estimated as a 
function of the chosen time bin, the transmitting interval 
settings and the behaviour of the animal itself. By apply-
ing the method to an extensive data set, the objectives of 
the current study are to (1) evaluate the predictive per-
formance of the new approach; (2) compare different 
hypothetical range testing scenarios using this method, 
and (3) investigate the implications for detection range in 
study designs with different transmitter settings and ani-
mal species.

Methods
All analyses were performed in R software [27]. R scripts 
are made available on GitHub (https:// github. com/ Jolie 
nGoos sens/ Range Testi ngTime).

Analytical protocol
Firstly, data are prepared to model the detection prob-
ability of individual transmissions π at a given temporal 
scale (e.g. hourly or daily). For every receiver–sentinel 
transmitter combination, the number of transmissions 

https://github.com/JolienGoossens/RangeTestingTime
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and detections are calculated for the relevant time bin 
and fitted in a binomial generalized linear model (using 
a frequentist or Bayesian approach) to predict π in rela-
tion to ambient and technical variables. The probability P 
of discerning k or more detections out of n transmissions 
throughout that time bin is then calculated as the cumu-
lative distribution function:

with p representing the individual detection probability, 
obtained as the predicted π from the logistic model. In 
Eq. 1, X denotes the number of detections and n the num-
ber of transmissions within the considered time frame. 
The detection threshold k is the minimum number of 
detections (X) for a transmitter to be ascertained as pre-
sent. Therefore, P amounts to the probability of detect-
ing a transmitter at least k times out of the n transmitted 
signals within a period of time, given the probability π of 
detecting a single transmission under the prevailing cir-
cumstances within that time frame (Fig. 1).

Zero threshold
To address the risk of overestimating P, we propose to set 
a zero threshold for the modelled probability π. The ‘zero-
corrected’ individual probability π0 is defined as 0 below 
a set threshold value for π and rescaled to values between 

(1)

P = P(X ≥ k) = 1− P(X ≤ [k − 1])

= 1−

k−1
∑

i=0

(

n
i

)

pi(1− p)n−i,

0 and 1 for the remaining range of the predicted π. Even 
an extremely low individual probability π can generate a 
high cumulative probability P if n is high (Fig. 1). The zero 
threshold deals with the concern of cumulating low pre-
dicted probabilities. A logistic model can never render a 
predicted probability of zero, as the logarithm of zero is 
not defined. The predicted probability π is also associated 
with uncertainty, which will propagate with the summing 
and multiplication operations in Eq.  1 [28]. Setting the 
zero threshold should be a study-specific consideration, 
where one evaluates the confidence in the logistic model 
on the one hand and weighs the risk of overestimating 
versus underestimating π on the other.

Defining n
In Eq.  1, n represents the number of transmissions 
that can be detected by a receiver. For a fixed senti-
nel transmitter, n is defined as the number of executed 
transmissions within the considered time bin. For a non-
stationary animal-borne transmitter, however, n needs to 
reflect the number of transmissions broadcasted while 
the tagged animal is within a certain range around a 
receiver. Therefore, the value of n will depend on the pro-
grammed transmitting interval and the time bin, in addi-
tion to the movement behaviour of the tagged animal. 
Here, we calculate the integer n as

(2)n =

⌊

tmin

T

⌋

,

Fig. 1 Graphical illustration of the relationship between the individual and cumulative detection probability as calculated with Eq. 1. P represents 
the probability of observing a minimum of 1, 2 or 3 detections (k) out of 5 (grey) or 60 (beige) transmissions (n) as calculated with the probability π 
of detecting an individual transmission (upper) and for π0 with zero threshold of 0.05 (lower)
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where T  is the mean transmitting interval and tmin is 
the minimum time an animal is hypothesized to spend 
within range of the receiver. When defining tmin, we make 
assumptions based on the expected movement behaviour 
(e.g. speed or residency) of the species of interest. For 
example, high residency or low activity would result in a 
higher estimate for tmin than for migrating behaviour. The 
less is known about a study species and/or area, the more 
conservatively low tmin should be set.

Empirical data set
Between 13 May and 12 October 2020, an array of 27 
VR2AR receivers (InnovaSea Systems Inc., USA) was set 
up in the Belwind offshore wind farm in the Belgian part 
of the North Sea. Receivers were deployed with tripod 
moorings [10], with distance between receivers ranging 
from 125 to 1628  m (Fig.  2). The array design was pur-
posed to investigate presence and fine-scale movement 
patterns of plaice (Pleuronectes platessa), Atlantic cod 
(Gadus morhua) and European seabass (Dicentrarchus 

labrax) in the framework of ongoing studies, for which 
the VR2AR receivers’ built-in transmitters (mean trans-
mitting interval of 10  min) served as synchronization 
tags for a fine-scale positioning application. Transmit-
ting power output was set as high (154 dB) for the entire 
study period for all built-in transmitters, except for three 
(Fig. 2) that were programmed as low (142 dB) before 16 
June 2020 in the interest of assessing the effect of power 
output on detection range. Detections on the dates of 
receiver installation, receiver recovery and power setting 
changes were excluded from the analysis, making for a 
total of 150 days of detection data.

Ambient and technical conditions taken into account 
consisted of wind and current speed and azimuth, noise, 
receiver tilt angle, temperature and days since deploy-
ment (Table 1). Wind measurements were obtained from 
‘Meetnet Vlaamse Banken’ from station Westhinder 
(51.38°N, 2.44°E). Modelled current data originated from 
a forecast model [29]. From the hourly wind and current 
velocities, daily median current and direction were cal-
culated using trigonometry principles. For both wind and 

Fig. 2 Map (A) with the location of the study area (B) in the Belwind offshore wind farm with locations of VR2AR receivers. The built‑in transmitters 
were either set to transmit at high power output for the entire study period (purple) or at low power output before 16 June 2020 and high power 
output afterwards (blue). Hypothetical range testing scenarios included either all receivers and built‑in transmitters or those within a North–South 
or East–West axis (pink dotted lines)
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current, the azimuth was calculated as the angle between 
the transmitter–receiver bearing and the direction. Noise 
(mV), tilt angle (°) and temperature (°C) were drawn 
from the VR2AR built-in sensors. The hourly measure-
ments were linearly interpolated to the stroke of every 
hour, from which daily medians were calculated. Before 
inclusion in the model, all continuous variables were 
standardized.

Application of the approach
The described protocol was applied to the empirical data 
set to assess the detection range for determining pres-
ence in hourly and daily time bins.

Logistic model
We evaluated for every sentinel transmission whether 
it was detected by the receivers in the study set-up. To 
account for internal clock drift of the acoustic receivers, 
the recorded time of detection had to be within 100  s 
before or after the registration of the successful trans-
mission on the built-in transmitter’s receiver (D. Webber, 
pers. comm.), after applying a linear time correction on 
the offloaded receiver data (VUE software, InnovaSea 
Systems Inc., USA). For every transmitter–receiver com-
bination, the hourly and daily numbers of transmissions 
and detections were calculated. Transmitter–receiver 
combinations spaced more than 1100  m were excluded 
from the analysis. Generalized linear models with a bino-
mial distribution were applied to predict πhour and πday. 
Response variables were the hourly and daily number of 
transmissions successfully detected versus those unde-
tected. The inclusion of different explanatory variables 
was evaluated for (1) relevance by data exploration [30]; 

(2) statistical significance by backwards model selection 
using the Akaike information criterion (AIC) and likeli-
hood ratio test (LRT) [31], and (3) practical significance 
on the basis of effect size [32, 33], whereby factors were 
excluded from the model if the effect estimate was below 
|0.2|.

Cumulative detection probability
Cumulative detection probabilities Phour and Pday were 
then calculated (Eq. 1) and validated for the entire study 
period. The detection threshold k was set at 2, as applied 
by many studies [19–21]. The number of tries n was set 
as the registered number of sentinel transmissions within 
the hour or day. Individual detection probabilities πhour 
and πday were obtained using the logistic model formu-
lae. Phour and Pday were then calculated with individual 
detection probabilities π0

hour and π0
day at a zero thresh-

old of 0.05. If P ≥ 0.5, sentinel transmitters were classi-
fied as present versus not present for P < 0.5 [34]. These 
binary predictions were compared with the determined 
presence throughout every day and hour (0/1, with 1 
meaning at least 2 (k) transmissions were detected). To 
assess the predictive performance, a confusion matrix 
was inspected from which the performance metrics sen-
sitivity, specificity and accuracy were calculated, in addi-
tion to the computation of area under the curve (AUC) 
[35]. High values for accuracy and AUC suggested a good 
overall performance, whereas sensitivity and specificity 
depicted the model’s ability to correctly predict positive 
and negative values, respectively. For range testing, we 
favoured high scores for specificity over sensitivity, as a 
high number of false positives would indicate an overesti-
mation of range.

Scenarios for detection range assessment
Using our empirical data set, we evaluated different 
scenarios for detection range assessment with a cross-
validation approach. Therefore, we split the full data 
set of sentinel transmissions and detections into dif-
ferent training and test subsets (Table 2), as if we were 
assessing detection range (training set) for an actual 
telemetry study (test set). For each of the test subsets, 
we considered 16 June 2020 as the start of the hypoth-
esized study. Training sets either contained ‘range test’ 
data from before this date, ‘reference tag’ data from 
during this study, or both. ‘Range test’ training data 
considered the data of 8, 16, 24 or 32  days before the 
start of the hypothetical study. Spatially, these training 
sets consisted either of all 27 receiver–sentinel trans-
mitter combinations, a North–South axis (8 receivers) 
or East–West axis (9 receivers), approximately parallel 
and perpendicular to the dominant current direction, 

Table 1 Overview of ambient and technical conditions during 
the study (14 May–11 October 2020)

Variable Range Median Method

Distance (m) 125–1628 743

Transmitting power 
output

142 dB 
(Low)/154 dB 
(High)

Wind speed (m/s) 0.4–24.9 7.1 Measured (Westhinder)

Wind azimuth (°) 0–180 90 Measured (Westhinder)

Current speed (m/s) 0.09–0.69 0.36 Modelled

Current azimuth (°) 0–180 90 Modelled

Temperature (°C) 10.7–20.6 17 Measured (VR2AR)

Tilt (°) 0–17 4 Measured (VR2AR)

Noise (mV) 150–917 287 Measured (VR2AR)

Days since deploy‑
ment

1–158
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respectively (Fig.  2). The ‘reference tag’ training data 
on the other hand consisted of detections on all 27 
receivers of 1, 2 or 3 sentinel transmitters during the 
hypothesized study. When the model was trained on 
both ‘range test’ and ‘reference tag’ data, training data 
consisted of 32 days of all 27 receiver–transmitter com-
binations before the start date, in addition to the detec-
tions of 1, 2 or 3 sentinel transmitters during the study. 
Test data subsets consisted of detection data from after 
the start of the study (118 days), excluding transmitter 
detections included in the training subset, if any. The 
cross-validation was performed for both hourly and 
daily probabilities.

For the cross-validation, logistic models were 
trained on each of the specified training sets. The 
included variables were drawn from the model selec-
tion based on the full hourly and daily data sets. As 
sentinel transmitters were all set to transmit at high 
power output after 16 June 2020, power output was 
not included in the logistic models for the ‘reference 
tag’ training data. Using the logistic model formulae 
from the training model, πhour and πday were predicted 
for the test data. Cumulative probabilities Phour and 
Pday were calculated with Eq. 1, with k set as 2 and n 
as the number of registered sentinel transmissions in 
each specific hour or day. Transmitters were thus pre-
dicted as detected in that hour or day if P ≥ 0.5 and 
as not detected (0) if P < 0.5. The predictive capacity 
of these models was assessed by calculating root mean 
square error (RMSE) of the true detection percent-
age and the predicted π and by calculating specific-
ity, AUC and the Brier Skill Score (BSS) for the binary 
predictions based on the cumulative probability P 
(Table  2). For the calculation of BSS, the Brier score 
of the full model was used as the reference value Brier 
score [36].

Assessing range for different study species
Detection range in our study area was estimated in the 
context of ongoing telemetry studies investigating hourly 
or daily presence of different species. The expected mini-
mum time tmin was hypothesized to be 15 min per hour 
and 30 per day for very mobile species (e.g. European 
seabass), 30 and 60 min for less active species (e.g. Atlan-
tic cod) and 1 and 3 h for species that would mostly stay 
put (e.g. plaice). Using these tmin estimates in Eq. 2, n was 
calculated for the different species at mean transmit-
ting intervals T  of 90, 180 and 360 s. Phour and Pday were 
calculated (Eq. 1) for distances from 100 to 1100 m with 
k = 2 and the predicted π0

hour and π0
day at median hourly 

and daily conditions, respectively. The distance at which 
detection probability was predicted to be 50% (= D50) 
was calculated using one-dimensional root-finding.

Results
Logistic model
After variable selection, the final logistic regression mod-
els for both hourly and daily response variables included 
the explanatory variables distance, noise, power output, 
the interactions of distance–noise and distance–power 
output (Table  3). Visual inspection of the relationship 
with distance led us to include distance transformed to 
the second power [37], which contributed to an improved 
model fit. In summary, high levels of ambient noise and 
low transmitting output power significantly reduced the 
probability of a transmission being detected, whereby 
these negative effects were exacerbated at greater dis-
tance (Fig. 3). At shorter distance (< 300 m) of a receiver, 
the detection probability of a low power output transmit-
ter exceeded that of one with high power output, which 
was likely due to close proximity detection interference 
[2, 26]. Details of the model selection were fully described 
in Additional file 1.

Table 2 Overview of training and test data subsets to test different range assessment scenarios, with the number of days, built‑in 
transmitters (T) and receivers (R) included in the subsets

Training set Test set

Before study
32 days

During study
118 days

During study
118 days

# Models
(per time bin)

Range test 8/16/24/32 days
27 T–27 R
9 T–9 R (East–West)
8 T–8 R (North–South)

27 T–27 R
27 T–27 R
27 T–27 R

4
4
4

Reference tag 1 T–27 R
2 T–27 R
3 T–27 R

26 T–27 R
25 T–27 R
24 T–27 R

27
351

2925

Range test + reference tag 32 days
27 T–27 R
27 T–27 R
27 T–27 R

1 T–27 R
2 T–27 R
3 T–27 R

26 T–27 R
25 T–27 R
24 T–27 R

27
351

2925
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Cumulative detection probability
Performance metrics were compared for calculations 
of Phour and Pday (k = 2, n: median 143 per day, 6 per 
hour) using π and π0 (Table  4). While the predictive 
performance differed only slightly for Phour, it markedly 
improved with the zero threshold for Pday. Aside from a 

higher overall performance (accuracy and AUC), speci-
ficity increased by 30.3% for the daily model (2.2% for the 
hourly model). Whereas Phour was overestimated at short 
distance (< 600 m), the accuracy of the daily predictions 
was more consistent over distance (Fig. 3).

Scenarios for detection range assessment
The performance of distinct scenarios for the assess-
ment of detection range varied considerably (Fig.  4). 
When models were trained exclusively with ‘range test’ 
data before the hypothesized start of the study, the per-
formance of the scenarios using the full receiver set-up 
and the East–West axis were comparable. Training sets 
with receivers located parallel to the dominant current 
direction along the North–South axis, resulted in a lower 
performance (higher RMSE and lower specificity and 
AUC). The variation in performance between different 

Table 3 Summary of the GLM with binomial distribution for individual detection probability πhour (left) and πday (right). Hourly noise 
measurements were linearly interpolated to the stroke of every hour (left), from which daily medians were calculated (right)

Coefficients Estimate Std. Error p-value Coefficients Estimate Std. error p-value

Intercept − 2.299 0.0018  < 0.001 Intercept − 2.320 0.0018  < 0.001

Distance − 3.425 0.0037  < 0.001 Distance − 3.327 0.0037  < 0.001

Distance2 − 0.963 0.0025  < 0.001 Distance2 − 0.866 0.0025  < 0.001

Noise − 1.056 0.0021  < 0.001 Noise (median) − 1.012 0.0020  < 0.001

Power (low) − 3.203 0.0197  < 0.001 Power (Low) − 3.187 0.0198  < 0.001

Distance: noise − 0.448 0.0020  < 0.001 Distance: Noise (median) − 0.388 0.0019  < 0.001

Distance: power (low) − 2.732 0.0184  < 0.001 Distance: Power (Low) − 2.561 0.0185  < 0.001

Fig. 3 Estimated probabilities of detection over distance for high (purple) and low (blue) transmitting power output at an hourly (upper) and daily 
(lower) resolution. Left: range and median (line) logistic model predictions. Middle and right: bar plots of observed (left bar, darker colouration) and 
predicted (right bar, lighter colouration) binary detection metric (at least k = 2 detections out of n transmissions) per distance bin of 100 m

Table 4 Performance metrics for binary predictions calculated 
with and without zero thresholds for Phour and Pday

Individual 
detection 
probability

Sensitivity Specificity Accuracy AUC 

πhour 84.9 83.6 84.1 84.3

π0
hour 81.9 85.8 84.4 83.8

πday 96.3 56.2 82.0 76.3

π0
day 86.5 86.5 86.5 86.5
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study durations was considered to be minor for the ‘range 
testing’ set-ups. For the ‘reference tag’ training data, the 
logistic models were trained on the detections of 1, 2 
or 3 sentinel transmitters during the study period. The 
overall median performance persisted or improved (i.e. 
lower RMSE, higher specificity, AUC and BSS) as more 
sentinel transmitters were included. Still, variation was 
very large, indicating the representativeness of the ‘ref-
erence tag’ training set varied strongly with the sentinel 
transmitter locations. Finally, including both ‘range test’ 
and ‘reference tag’ data yielded much more consistency 
in the performance metrics. Yet, specificity for ‘reference 
tag’ training sets excluding the ‘range test’ data was often 
higher than for those where it was included, therefore 
seemingly resulting in improved predictions.

To understand the variation in the performance met-
rics, AUC and BSS were plotted against specificity and 
RMSE (Fig. 5). AUC and BSS displayed a parabolic rela-
tionship with specificity, meaning higher specificity 
came at the cost of lower overall prediction performance. 
An optimal approach for range assessment should be 
found at the trade-off between specificity and general 

performance, i.e. at the top of the parabola. Importantly, 
the training models combining ‘range test’ and ‘reference 
tag’ data were all found to be comparable in this relation-
ship. Finally, low RMSE values for individual detection 
probability π produced more accurate cumulative prob-
ability predictions, as could be expected.

Assessing range for different study species
Using hypothesized tmin values for species with distinct 
movement patterns, we calculated n at different mean 
transmitting intervals (Table  5). For a fast moving spe-
cies, thought to spend at least 30  min throughout a 
day around a receiver if present that day, and equipped 
with a tag transmitting on average once every 180  s, n 
would result in minimum 10 transmissions that could be 
detected by that receiver throughout the day. Notice that 
different values for tmin can result in a similar n, depend-
ing on the transmitting interval.

Using these values for n, detection probabilities Phour 
and Pday were calculated (Eq.  1; k = 2) using the logistic 
model predictions of π over distance for median noise 
conditions and high transmitting power output. The 

Fig. 4 Performance metrics root mean square error (RMSE), specificity, area under the curve (AUC) and Brier Skill Score (BSS) for hourly (left) and 
daily (right) models trained on range test data (red), reference tag data (light blue) or both (dark blue)
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visualizations in Figs.  6 and 7 illustrate the impact of 
temporal resolution, transmitter interval settings and 
(expected) movement behaviour on detection range. 
Detection range as predicted by Phour and Pday markedly 
exceeded πhour and πday. The estimated D50 increased 
by 84 to 266 m, depending on n. These results illustrate 
the distinction between the probability π of detecting an 
individual transmission in a given time frame versus the 

Fig. 5 Relationship between performance metrics root mean square error (RMSE), specificity, area under the curve (AUC) and Brier Skill Score (BSS) 
for hourly and daily models trained on range test data (red), reference tag data (light blue) or both (dark blue)

Table 5 Calculation of detectable transmissions n for 
different values of the expected minimum time tmin and mean 
transmitting interval T

tmin = 
15 min

tmin = 
30 min

tmin = 
60 min

tmin = 
180 min

T  = 90 s 10 20 40 120

T  = 180 s 5 10 20 60

T  = 360 s 2 5 10 30

Fig. 6 Predicted detection probabilities over distance for high transmitting power at median noise conditions for an hourly (upper) and daily 
(lower) resolution, as calculated with different numbers of detectable transmissions n (Table 5). The intersection of the curves with a probability of 
0.5 (white line) indicates the D50. The intersection of the curves of π and P was a result of setting the detection threshold k at 2, whereas π and P at 
k = 1 would never intersect (Fig. 1)
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probability P of determining presence during that time 
frame.

Discussion and conclusion
Importance of considering time
Our results stress the importance of explicitly account-
ing for time when assessing detection range. When few 
detections of multiple transmissions suffice to ascer-
tain presence within a time bin, predicted range dif-
fers distinctly from the probability of detecting a single 
transmission within that time bin. Our results showed 
that detection range might be severely underestimated 
when applying the individual detection probability for 
studies making use of binary presence/absence metrics. 
Moreover, a single receiver station can result in different 
detection ranges for animals occupying the space at that 
location differently. High values of tmin, e.g. for animals 
known to move slowly and/or to exhibit high residency 
(or for transmitters set at short transmitting intervals), 
were demonstrated to result in a higher estimated range.

Evaluation of the proposed method
To our knowledge, this study offers the first framework 
to quantify the detection range for presence/absence 
metrics within a given time frame. The proposed for-
mula (Eq. 1) provides a mathematically straightforward 
tool that builds on the commonly estimated probability 

of detecting a single transmission π. The accuracy and 
specificity of over 84% shows the developed approach 
performs adequately. However, the performance of the 
hourly model varied with distance, whereas the accu-
racy of the daily predictions was more consistent. The 
formula’s parameters zero threshold, detection thresh-
old k and number of tries n should therefore be set and 
evaluated according to the specific needs of a study.

The zero threshold can explicitly deal with the risk 
of cumulating low logistic probabilities. The selected 
value for this threshold depends on the confidence in 
the binomial model predictions and the trade-off of 
the risks of over- and underestimating detection range. 
We believe that the relatively simple concept of a zero 
threshold—“below what threshold value do I not trust 
my logistic model outcome to exceed zero”—is to be 
preferred over a more sophisticated, yet mathemati-
cally exceedingly complex alternative of calculating 
the logistic error propagation [28]. For the purpose of 
understanding hourly and daily presence within the 
study area, we explicitly wanted to limit the amount of 
false positives as to not overestimate detection range. 
In contrast, telemetry studies that build on a smaller 
detection range [38] need to favour higher sensitivity. 
Applying the zero threshold in our study improved the 
daily predictions more dramatically than it did for the 
hourly model. This was in part attributed to a larger 
n, which made for a steeper curve than Phour (Fig.  1). 

Fig. 7 Predicted detection probabilities over distance around a receiver for high transmitting power at median noise conditions for an hourly 
(upper) and daily (lower) resolution, as calculated with different numbers of detectable transmissions n (Table 5). The D50 distance is marked for 
each probability (white line and text) with probabilities over and under 0.5 coloured in red and blue, respectively
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When setting a zero threshold therefore, the number 
of transmissions n, as well as the detection threshold k, 
should always be taken into consideration.

In addition to the estimated π0, the proposed approach 
requires values for n and k that are tailored to the telem-
etry study. Firstly, though a minimum of (generally 2) 
detections is often applied to qualify a time bin with fish 
presence [19–21], this detection threshold k has never 
been considered in range assessments. Secondly, the 
formula obliges a researcher to contemplate on the pre-
sumed number of detectable transmissions n in an ani-
mal study. Reflecting the hypothesized minimum time an 
animal would be in range of a receiver, tmin depends on 
the animal’s behaviour in a certain habitat (e.g. proneness 
to residency or a tendency to burrowing) and the consid-
ered time bin. Depending on the species, tmin may even 
be assumed to vary over time, for example if an animal 
is only seasonally resident [19] or exhibits diel variation 
in movement behaviour [41]. If little is known about the 
animals, researchers can opt to set precautionary low val-
ues for tmin and therefore n. Likewise, if a study requires 
to pick up nearly every transmission of a tagged animal in 
a certain area (e.g. during migration), researchers have to 
program the transmitting interval settings and/or space 
between receivers in the array accordingly [15]. The pre-
dicted cumulative probability P would then reach values 
similar to or even lower than the individual detection 
probability π (Fig.  1). In many cases, however, informa-
tion is available on the expected movement behaviour 
(e.g. if the species was tagged before), which can be used 
for a more adequate assessment of range. Intuitively, one 
may resist the idea of seemingly imposing a bias on the 
analysis. In practice, however, the formula for calculat-
ing n (Eq. 2) builds on parameters that are otherwise pre-
sumed implicit when designing a telemetry study (e.g. for 
the choice of transmitting interval settings) [15, 39, 40]. 
By specifying how these parameters relate (Eqs. 1 and 2), 
they can explicitly be taken into account in the assess-
ment of detection range and in the design of a telemetry 
study.

Accounting for range
Despite an increasing recognition in the telemetry com-
munity for the need of range testing, only few range test 
studies [38, 42] evaluate their own design or the applica-
bility to the telemetry study and analytical application. As 
a standard practice, receivers and sentinel transmitters 
are placed on a line to investigate range [4, 5, 43]. In this 
study, we show that the orientation of that line can influ-
ence the estimation of detection range, likely in relation 
to the direction of the dominant currents [23]. Likewise, 
detections of sentinel transmitters used during this study 

weren’t necessarily representative of the performance 
of the entire array. In our case, the optimal strategy to 
obtain reliable detection errors was to assess range before 
the study using the entire receiver array, in addition to 
sentinel transmitter data during the study.

Aside from the range test itself, the method to account 
for detection error must be tailored to the analytical 
application and its temporal resolution. From the method 
elaborated in this study, the cumulative probability P ena-
bles the calculation of detection error at the same tem-
poral resolution of the presence metric of interest. When 
analysing patterns in presence, this measurement error 
can be directly included either as a Bayesian error struc-
ture in a generalized model [44] or in a state-space mod-
elling framework [45–47]. For telemetry analyses that do 
not build on presence/absence as a response variable, dif-
ferent methods have been developed to account for range 
or detection efficiency [16]. Detection counts for example 
can be directly recalibrated using a correction factor [25], 
whereas error can also be included in the calculation of 
centres of activity based on detection counts [48, 49]. 
When investigating the sequence of detections in space, 
range can be assessed specifically for migratory routes 
[50] or network analysis [38]. For fine-scale positioning, 
horizontal position errors would be quantified within an 
entire receiver array [8], potentially accounting for indi-
vidual receiver’s contributions [51] and system settings 
[52].

Implications for study design
We strongly argue to consider the assessment of range 
as a fundamental aspect of the study design, the data 
analysis and the interpretation of results. Aside from 
factors beyond a researcher’s control, such as environ-
mental conditions and movement behaviour [15], range 
is an interplay of distance to a receiver [1], the deploy-
ment set-up [10] and receiver type [38], tag attachment 
[9], transmitting power output [2, 7] and depending on 
the application: transmitting interval and temporal reso-
lution of the analysis. Therefore, researchers can fine-
tune more aspects in the design of a telemetry study than 
simply the lay-out of a receiver array. Understanding the 
effect of these factors on detection range, is also advan-
tageous for budget management of expensive telemetry 
equipment. Adequate range assessments may optimize 
transmitter battery life times, e.g. by carefully deciding 
on transmitting interval and power output [2], or reduce 
the number of receivers required in an array [53–55]. 
Building on the multitude of detection range studies, this 
study can serve as a plea to rethink detection range as a 
spatiotemporal interplay of many factors.
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Mean transmitting interval.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40317‑ 022‑ 00290‑2.

Additional file 1: Appendix model selection.

Acknowledgements
Data and infrastructure were provided by VLIZ as part of the Flemish contribu‑
tion of the LifeWatch ESFRI funded by the Research Foundation—Flanders 
(FWO). We thank the crew of RV Simon Stevin and RHIB Zeekat, as well as 
Annelies De Backer, for their help with the field work. We thank the reviewers 
for their constructive feedback.

Author contributions
JG analysed the data and wrote the manuscript. JR, JB and JG designed the 
study and collected the data. JR, JB, PV and SB contributed to the data analysis. 
JB created the map. All authors critically contributed to the drafts and gave 
final approval for publication. All the authors read and approved the final 
manuscript.

Funding
This study makes use of data and infrastructure provided by the VLIZ and 
funded by the Research Foundation—Flanders (FWO) as part of the Belgian 
contribution to the LifeWatch European Research Infrastructure (I002021N‑
LIFEWATCH). JG holds a doctoral grant from FWO (1S14821N).

Availability of data and materials
The datasets generated and analysed during the current study are available in 
the DOI repository https:// doi. org/ 10. 14284/ 545 [56], with detection data also 
accessible on the data platform of the European Tracking Network (www. lifew 
atch. be/ etn).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Marine Biology Research Group, Department of Biology, Krijgslaan 
281‑S8, 9000 Ghent, Belgium. 2 Flanders Marine Institute, Wandelaarkaai 7, 
8400 Ostend, Belgium. 3 Flanders Research Institute for Agriculture, Fish‑
eries and Food, ILVO Marine Research, Ankerstraat 1, 8400 Ostend, Bel‑
gium. 4 Aquatic Ecology Research Group, Department of Animal Sciences 
and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, 
Belgium. 5 Research Institute for Nature and Forest (INBO), Aquatic Manage‑
ment, Havenlaan 88, bus 73, 1000 Brussels, Belgium. 

Received: 28 January 2022   Accepted: 6 May 2022

References
 1. Kessel ST, Cooke SJ, Heupel MR, Hussey NE, Simpfendorfer CA, Vagle 

S, et al. A review of detection range testing in aquatic passive acoustic 
telemetry studies. Rev Fish Biol Fish. 2014;24(1):199–218.

 2. Scherrer SR, Rideout BP, Giorli G, Nosal EM, Weng KC. Depth‑ and range‑
dependent variation in the performance of aquatic telemetry systems: 
understanding and predicting the susceptibility of acoustic tag‑receiver 
pairs to close proximity detection interference. PeerJ. 2018;6: e4249.

 3. Selby TH, Hart KM, Fujisaki I, Smith BJ, Pollock CJ, Hillis‑Starr Z, et al. Can 
you hear me now? Range‑testing a submerged passive acoustic receiver 
array in a Caribbean coral reef habitat. Ecol Evol. 2016;6(14):4823–35.

 4. Reubens J, Verhelst P, van der Knaap I, Deneudt K, Moens T, Hernandez 
F. Environmental factors influence the detection probability in acoustic 
telemetry in a marine environment: results from a new setup. Hydrobio‑
logia. 2019;845:81–94.

 5. Huveneers C, Simpfendorfer CA, Kim S, Semmens JM, Hobday AJ, 
Pederson H, et al. The influence of environmental parameters on the 
performance and detection range of acoustic receivers. Methods Ecol 
Evol. 2016;7(7):825–35.

 6. Winter ER, Hindes AM, Lane S, Britton JR. Detection range and efficiency 
of acoustic telemetry receivers in a connected wetland system. Hydro‑
biologia. 2021;848(8):1825–36.

 7. Kessel ST, Hussey NE, Webber DM, Gruber SH, Young JM, Smale MJ, 
et al. Close proximity detection interference with acoustic telemetry: 
the importance of considering tag power output in low ambient noise 
environments. Anim Biotelemetry. 2015;3(1):5.

 8. Stott ND, Faust MD, Vandergoot CS, Miner JG. Acoustic telemetry detec‑
tion probability and location accuracy in a freshwater wetland embay‑
ment. Anim Biotelemetry. 2021;9(1):19.

 9. Dance MA, Moulton DL, Furey NB, Rooker JR. Does transmitter placement 
or species affect detection efficiency of tagged animals in biotelemetry 
research? Fish Res. 2016;183:80–5.

 10. Goossens J, T’Jampens M, Deneudt K, Reubens J. Mooring scientific 
instruments on the seabed—design, deployment protocol and perfor‑
mance of a recoverable frame for acoustic receivers. Methods Ecol Evol. 
2020;11(8):974–9.

 11. Welsh J, Fox R, Webber D, Bellwood D. Performance of remote acoustic 
receivers within a coral reef habitat: implications for array design. Coral 
Reefs. 2012;31:693–702.

 12. Heupel MR, Reiss KL, Yeiser BG, Simpfendorfer CA. Effects of biofouling on 
performance of moored data logging acoustic receivers. Limnol Ocean‑
ogr Methods. 2008;6(7):327–35.

 13. Grothues T, Able K, Pravatiner JH. Winter flounder (Pseudopleuronectes 
americanus Walbaum) burial in estuaries: acoustic telemetry triumph and 
tribulation. J Exp Mar Biol Ecol. 2012;438:125–36.

 14. Swadling DS, Knott NA, Rees MJ, Pederson H, Adams KR, Taylor MD, 
et al. Seagrass canopies and the performance of acoustic telemetry: 
implications for the interpretation of fish movements. Anim Biotelemetry. 
2020;8(1):8.

 15. Heupel MR, Semmens JM, Hobday AJ. Automated acoustic tracking of 
aquatic animals: scales, design and deployment of listening station arrays. 
Mar Freshw Res. 2006;57(1):1–13.

 16. Whoriskey K, Martins EG, Auger‑Méthé M, Gutowsky LFG, Lennox RJ, 
Cooke SJ, et al. Current and emerging statistical techniques for aquatic 
telemetry data: a guide to analysing spatially discrete animal detections. 
Methods Ecol Evol. 2019;10(7):935–48.

 17. Cimino M, Cassen M, Merrifield S, Terrill E. Detection efficiency of acoustic 
biotelemetry sensors on Wave Gliders. Animal Biotelemetry. 2018;6(1):16.

 18. O’Brien MHP, Secor DH. Influence of thermal stratification and storms 
on acoustic telemetry detection efficiency: a year‑long test in the US 
Southern Mid‑Atlantic Bight. Anim Biotelemetry. 2021;9(1):8.

 19. Doyle TK, Haberlin D, Clohessy J, Bennison A, Jessopp M. Localised resi‑
dency and inter‑annual fidelity to coastal foraging areas may place sea 
bass at risk to local depletion. Sci Rep. 2017;7(1):45841.

 20. Novak AJ, Becker SL, Finn JT, Danylchuk AJ, Pollock CG, Hillis‑Starr Z, et al. 
Inferring residency and movement patterns of horse‑eye jack Caranx 
latus in relation to a Caribbean marine protected area acoustic telemetry 
array. Anim Biotelemetry. 2020;8(1):12.

 21. Ramsden S, Cotton C, Curran M. Using acoustic telemetry to assess pat‑
terns in the seasonal residency of the Atlantic stingray Dasyatis sabina. 
Environ Biol Fish. 2017;100:89–98.

https://doi.org/10.1186/s40317-022-00290-2
https://doi.org/10.1186/s40317-022-00290-2
https://doi.org/10.14284/545
http://www.lifewatch.be/etn
http://www.lifewatch.be/etn


Page 13 of 13Goossens et al. Animal Biotelemetry           (2022) 10:17  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 22. Melnychuk M. Detection efficiency in telemetry studies: Definitions and 
evaluation methods. In: Adams N, Beeman J, Eiler J, editors. Telemetry 
techniques: a user guide for fisheries research. Bethesda: American Fish‑
eries Society Books; 2012. p. 339–57.

 23. Mathies NH, Ogburn MB, McFall G, Fangman S. Environmental interfer‑
ence factors affecting detection range in acoustic telemetry studies 
using fixed receiver arrays. Mar Ecol Prog Ser. 2014;495:27–38.

 24. Brownscombe JW, Lédée EJI, Raby GD, Struthers DP, Gutowsky LFG, 
Nguyen VM, et al. Conducting and interpreting fish telemetry studies: 
considerations for researchers and resource managers. Rev Fish Biol Fish. 
2019;29(2):369–400.

 25. Brownscombe JW, Griffin LP, Chapman JM, Morley D, Acosta A, Crossin 
GT, et al. A practical method to account for variation in detection range 
in acoustic telemetry arrays to accurately quantify the spatial ecology of 
aquatic animals. Methods Ecol Evol. 2020;11(1):82–94.

 26. Klinard NV, Halfyard EA, Matley JK, Fisk AT, Johnson TB. The influence 
of dynamic environmental interactions on detection efficiency of 
acoustic transmitters in a large, deep, freshwater lake. Anim Biotelemetry. 
2019;7(1):17.

 27. R Core Team. R: A language and environment for statistical computing. 
2021.

 28. Ku H. Notes on the use of propagation of error formulas. J Res Natl Bur 
Stand. 1966;70C(4):263–73.

 29. Legrand S, Baetens K. Hydrodynamic forecast for the Belgian Coastal 
Zone. Physical State of the Sea‑Belgian Coastal Zone—COHERENS UKMO: 
Royal Belgian Institute of Natural Sciences; 2021.

 30. Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid 
common statistical problems. Methods Ecol Evol. 2010;1(1):3–14.

 31. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. Mixed effects models 
and extensions in ecology with R. New York: Springer; 2009.

 32. Ellis S, Steyn HS. Practical significance (effect sizes) versus or in combina‑
tion with statistical significance (p‑values). Manag Dyn. 2003;12:51–3.

 33. Sullivan GM, Feinn R. Using effect size—or why the p value is not 
enough. J Grad Med Educ. 2012;4(3):279–82.

 34. Peng C‑YJ, Lee KL, Ingersoll GM. An introduction to logistic regression 
analysis and reporting. J Educ Res. 2002;96(1):3–14.

 35. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver 
operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.

 36. Brier GW. Verification of forecasts expressed in terms of probability. Mon 
Weather Rev. 1950;78(1):1–3.

 37. Rönkkö M, Aalto E, Tenhunen H, Aguirre‑Urreta MI. Eight simple guide‑
lines for improved understanding of transformations and nonlinear 
effects. Organ Res Methods. 2021;25(1):48–87.

 38. Mourier J, Bass NC, Guttridge TL, Day J, Brown C. Does detection range 
matter for inferring social networks in a benthic shark using acoustic 
telemetry? Roy Soc Open Sci. 2017;4(9): 170485.

 39. Ellis RD, Flaherty‑Walia KE, Collins AB, Bickford JW, Boucek R, Walters 
Burnsed SL, et al. Acoustic telemetry array evolution: from species‑ and 
project‑specific designs to large‑scale, multispecies, cooperative net‑
works. Fish Res. 2019;209:186–95.

 40. How JR, de Lestang S. Acoustic tracking: issues affecting design, analysis 
and interpretation of data from movement studies. Mar Freshw Res. 
2012;63(4):312–24.

 41. Reubens JT, De Rijcke M, Degraer S, Vincx M. Diel variation in feeding and 
movement patterns of juvenile Atlantic cod at offshore wind farms. J Sea 
Res. 2014;85:214–21.

 42. Baktoft H, Zajicek P, Klefoth T, Svendsen JC, Jacobsen L, Pedersen MW, 
et al. Performance assessment of two whole‑lake acoustic positional 
telemetry systems—is reality mining of free‑ranging aquatic animals 
technologically possible? PLoS ONE. 2015;10(5): e0126534.

 43. Loher T, Webster RA, Carlile D. A test of the detection range of acoustic 
transmitters and receivers deployed in deep waters of Southeast Alaska, 
USA. Anim Biotelemetry. 2017;5(1):27.

 44. Zuur AF, Ieno EN, Saveliev AA. Beginner’s guide to spatial, temporal, and 
spatial‑temporal ecological data analysis with R‑INLA. In: Zuur AF, editor. 
Using GLM and GLMM, vol. 1. Newburgh: Highland Statistics Ltd; 2017. p. 
362.

 45. Pedersen MW, Weng KC. Estimating individual animal movement from 
observation networks. Methods Ecol Evol. 2013;4(10):920–9.

 46. Auger‑Méthé M, Newman K, Cole D, Empacher F, Gryba R, King AA, et al. 
A guide to state–space modeling of ecological time series. Ecol Monogr. 
2021;91(4): e01470.

 47. Alós J, Palmer M, Balle S, Arlinghaus R. Bayesian state‑space model‑
ling of conventional acoustic tracking provides accurate descriptors of 
home range behavior in a small‑bodied coastal fish species. PLoS ONE. 
2016;11(4):e0154089‑e.

 48. Simpfendorfer CA, Heupel MR, Collins AB. Variation in the performance 
of acoustic receivers and its implication for positioning algorithms in a 
riverine setting. Can J Fish Aquat Sci. 2008;65(3):482–92.

 49. Winton MV, Kneebone J, Zemeckis DR, Fay G. A spatial point process 
model to estimate individual centres of activity from passive acoustic 
telemetry data. Methods Ecol Evol. 2018;9(11):2262–72.

 50. Melnychuk M, Walters C. Estimating detection probabilities of tagged fish 
migrating past fixed receiver stations using only local information. Can J 
Fish Aquat Sci. 2010;67:641–58.

 51. van der Knaap I, Slabbekoorn H, Winter HV, Moens T, Reubens J. Evaluat‑
ing receiver contributions to acoustic positional telemetry: a case study 
on Atlantic cod around wind turbines in the North Sea. Anim Biotelem‑
etry. 2021;9(1):14.

 52. Vergeynst J, Baktoft H, Mouton A, De Mulder T, Nopens I, Pauwels I. The 
influence of system settings on positioning accuracy in acoustic telem‑
etry, using the YAPS algorithm. Anim Biotelemetry. 2020;8(1):25.

 53. Pedersen MW, Burgess G, Weng KC. A quantitative approach to static sen‑
sor network design. Methods Ecol Evol. 2014;5(10):1043–51.

 54. Kraus RT, Holbrook CM, Vandergoot CS, Stewart TR, Faust MD, Watkinson 
DA, et al. Evaluation of acoustic telemetry grids for determining aquatic 
animal movement and survival. Methods Ecol Evol. 2018;9(6):1489–502.

 55. Kendall MS, Williams BL, Ellis RD, Flaherty‑Walia KE, Collins AB, Roberson 
KW. Measuring and understanding receiver efficiency in your acoustic 
telemetry array. Fish Res. 2021;234: 105802.

 56. Goossens J, Buyse J, Reubens J, Ghent University Marine Biology Research 
Group, Institute for Agricultural and Fisheries Research, Flanders Marine 
Institute. Detection range assessment Belwind offshore wind farm. 
Belgium, 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Taking the time for range testing: an approach to account for temporal resolution in acoustic telemetry detection range assessments
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Methods
	Analytical protocol
	Zero threshold
	Defining n
	Empirical data set

	Application of the approach
	Logistic model
	Cumulative detection probability
	Scenarios for detection range assessment
	Assessing range for different study species

	Results
	Logistic model
	Cumulative detection probability
	Scenarios for detection range assessment
	Assessing range for different study species

	Discussion and conclusion
	Importance of considering time
	Evaluation of the proposed method
	Accounting for range
	Implications for study design

	Acknowledgements
	References




