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METHODOLOGY

Moving wildlife tracking forward 
under forested conditions with the SWIFT GPS 
algorithm
S. W. Forrest1*  , M. R. Recio2 and P. J. Seddon1 

Abstract 

The remote collection of animal location data has proliferated in recent decades, and higher-frequency data are 
increasingly available with battery-saving optimisations such as ‘snapshot’ algorithms that acquire GPS satellite data 
and post-process locations off-board. This is the first study to assess the effects of vegetation and topography on 
the fix success rate and location error of global positioning system (GPS) devices that use the SWIFT fix algorithm, 
developed by Lotek. To assess fix success rate (FSR—the proportion of successful fixes compared to the total number 
of attempts) and location error (LE), we conducted a stationary test at a predominately forested site on the South 
Island of New Zealand. The overall FSR was 83% (± 15.3% SD), which was affected strongly by canopy closure above 
90%. Half of the locations were within 8.65 m of the true location, 79.7% were within 30 m, and 95% of locations were 
within 271 m. When 6 or more satellites were used, this reduced to 4.92 m and 18.6 m for 50% and 95%, respectively. 
Horizontal dilution of precision (HDOP), the number of satellites, and canopy closure all influenced location error. To 
field test the fix success rate of SWIFT GPS devices, we deployed them on forest-dwelling parrots with 2 and 3-h fix 
intervals, which showed similar FSR results to the stationary test when cavity-nesting individuals were removed (FSR 
mean ± SD = 81.6 ± 5.0%). The devices lasted an average of 147 days before depleting the battery, resulting in an 
average of 1087 successful fixes per individual at an average time of 9.38 s to acquire the GPS ephemeris, resulting in 
an average of 3.73 attempted locations per mAh of battery for PinPoint 350 devices. Our study provides a baseline for 
fix success rates and location errors under forested conditions that can be used for future SWIFT GPS tracking studies.
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Background
Global Positioning System (GPS) technology has revolu-
tionised wildlife tracking, allowing detailed coverage of 
an animal’s behaviour, for increasingly smaller species, 
and with reduced bias and thus much greater accuracy 
than conventional radio-tracking [1–5]. The technologi-
cal developments that are enabling smaller animals to 
be tracked with higher frequency intervals are creating a 
‘biologging revolution’ [5–7]. At the time of writing, GPS 

devices weigh as little as 1 g, allowing tracking of animals 
as small as 20–33  g (5% and 3% weight limit, respec-
tively). For larger animals, the decreased weight of mod-
ern GPS devices allows for the addition of other sensors 
such as accelerometers, proximity sensors, heart rate 
monitors, magnetometers, gyrometers, salinity and tem-
perature sensors, and video cameras [3, 6, 7].

As the weight of the deployed GPS device is limited 
by the weight of the animal, the number of fixes that can 
be achieved by a given battery capacity is a primary con-
sideration [8]. Solar panels are one solution to this issue, 
although for nocturnal or forest-dwelling species this 
may not be an option. For wildlife GPS devices without 
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solar panels, battery life depends on a variety of factors 
including the interval of time between locations (fix 
interval), the method of data recovery, additional sensors, 
the design and manufacturer, and the algorithm used to 
determine locations [9, 10].

GPS devices use a trilateration process to determine 
their location based on data received from multiple satel-
lites from one or several available satellite constellations, 
a process which typically occurs on-board the device. 
As a battery-saving optimisation, ‘snapshot’ algorithms 
rapidly acquire the GPS ephemeris (physical quantities 
including pseudorange, carrier phase, and Doppler of 
satellites in the sky), which can then be post-processed 
off-board to derive each location [10]. An example is 
Fastloc GPS, an algorithm which has greatly increased 
the applicability of GPS devices [11, 12]. Fastloc loca-
tions were initially developed for marine species that 
surface only briefly, but are typically less accurate than 
standard GPS locations [13]. A similar implementation of 
the GPS ephemeris snapshot technology is a ‘SWIFT fix’ 
algorithm for GPS devices, developed by the company 
Lotek (Lotek Wireless Inc, lotek.com), which is expected 
to deliver a greater number of location fixes for a given 
battery capacity. In a seabird tracking study that used 
equivalent Lotek PinPoint 120 GPS devices both with and 
without SWIFT fixes, the SWIFT fix devices attempted 
an average of 560 locations at a 15-min fix interval 
(range 96–1056 attempted locations) without depleting 
their batteries, whereas six of the equivalent standard-
fixing tags depleted their battery after an average of 75.7 
attempted locations with a 1-h fix interval (range 39–141 
attempted locations) [14].

Despite advancements in both miniaturisation and 
algorithm efficiency, the performance of GPS devices 
is still influenced by both environmental and technical 
factors, and the physical limitations of devices. Envi-
ronmental factors that obstruct GPS signals and lead to 
lower performance include vegetation and topography, 
while the technical factors affecting performance include 
the number of satellites available and their geometry in 
the sky. Physical limitations of the devices include the 
size and shape of the antenna and the algorithms used 
[15–19]. Common measures of GPS performance are 
the fix success rate (FSR)—the proportion of success-
ful fixes compared to the total number of attempts, and 
the location error (LE)—the linear distance between the 
recorded fix and the true location of the device [18]. Fix 
success rates vary widely depending on the species being 
tracked and the landscape features present—for ‘stand-
ard’ GPS devices (GPS devices that process locations on-
board) FSR can range from as low as 20% [20] to as high 
as 97% [21], but are typically in the range of 60–90% [17, 
18, 22, 23]. Low fix success rates are often attributed to 

vegetation that obstructs satellite signals, the movement 
and behaviour of the animal, and less so to topography 
[15, 17, 18, 20]. As fix success rates are affected by envi-
ronmental conditions, the resulting locations can be sys-
tematically biased towards areas that are more likely to 
reliably fix locations reliably [15, 16].

When successful fixes are taken, the precision cannot 
be calculated from animal deployments, as the true loca-
tion of the animal is not known. Therefore, it is informa-
tive to quantify the distribution of expected location 
errors when the true location of the device is known, such 
as through a stationary test. Location errors for standard 
GPS devices typically average 10–30 m, with 50% of val-
ues typically falling within 5.5–20 m (circular error prob-
ability—CEP 50%), and 95% of values (CEP 95%) typically 
falling within 20-80 m, although outlier locations in the 
order of several kilometres can also occur [15, 18, 19, 24–
26]. Location errors are influenced by many factors that 
obstruct or obscure satellite signals. Vegetation obstructs 
signals and can mean the GPS device connects with fewer 
satellites, which consequently provides poorer geome-
tries to calculate locations. Topography can also obstruct 
signals and lead to multi-pathing due to signal reflection 
on hard surfaces. Visible satellites that are nearer to each 
other in the sky typically result in larger measurement 
errors compared to satellites that are further apart, which 
is quantified as the dilution of precision (DOP) [15, 18, 
19]. Among DOP estimators, the horizontal dilution of 
precision (HDOP) is an indicator of the precision of lati-
tude and longitude values. Although HDOP indicates a 
likelihood of obtaining a more accurate location, previ-
ous studies have found that HDOP is a poor indicator of 
location accuracy  (R2 ranging from 0.14 to 0.18) [18, 19]. 
Thus, it has been concluded that DOP metrics should not 
be relied upon as an indicator of accuracy, nor as a vari-
able with which to filter the data [15, 18, 19]. GPS manu-
facturers often also have proprietary error metrics, such 
as eRes for Lotek devices with SWIFT fixes, which pro-
vide an indication of error.

As GPS devices that use SWIFT fixes differ from 
standard GPS devices in their processing of locations, it 
is important to ascertain baseline fix success rates and 
accuracy, so that these improvements in technology can 
be assessed. To address the lack of stationary testing for 
GPS devices with SWIFT fixes, we assessed lightweight 
GPS devices with SWIFT fixes in a range of canopy clo-
sure and topographic conditions. Our objectives were to: 
(1) assess the effect of environmental factors (obstruction 
due to vegetation and topography) on the fix success rate 
of lightweight GPS devices using a SWIFT fix algorithm; 
(2) assess the effect of environmental and technical fac-
tors—number of satellites, HDOP, and eRes (propri-
etary error metric) on location error; (3) investigate the 
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distribution of these errors, and discuss whether tech-
nical factors should be used to filter data; (4) assess the 
fix success rate when tags were deployed on a forest-
dwelling endemic New Zealand parrot—the kākā (Nestor 
meridionalis).

Materials and methods
GPS devices and their placement
To investigate the fix success rate (FSR) and precision 
of locations, we assessed the performance of nine Lotek 
PinPoint VHF 350 SWIFT GPS devices (18.4 g) in a sta-
tionary test in varying canopy and topography condi-
tions  (Additional file  1: Fig. S1). These devices have a 
short whip antenna (~ 5  cm) and allow a maximum of 
12  s to acquire the GPS satellite constellation ephem-
eris. If the device has not acquired sufficient satellite 
data within this time, it will time-out and register a failed 
fix. To investigate FSR for the intended purpose of the 
devices, we deployed the above SWIFT GPS devices on 
the South Island subspecies of an endemic New Zealand 
parrot, the kākā (Nestor meridionalis meridionalis). For 
the stationary test, devices were placed within Orokonui 
Ecosanctuary near Dunedin, New Zealand (− 45.770°S, 
170.596°E). Orokonui Ecosanctuary is a 307-ha ring-
fenced, predator-free sanctuary comprising open exotic 
grassland, open forest (Kunzea ericoides and Eucalyptus 
regnans), regenerating native broadleaf forest (e.g. Fuch-
sia excorticata, Griselinia littoralis, Melicytus ramiflo-
rus), and remnant native Podocarpaceae forest. Several 
predator-sensitive species that are threatened in New 
Zealand have been translocated to Orokonui, including 
kākā. Eleven sites were selected to be representative of 
New Zealand forest conditions, with a range of vegeta-
tion canopy closures, composition, and stand ages. One 
device was placed at each site, with two devices used 
twice. All stationary test locations were at sites of kākā 
presence confirmed by using VHF telemetry.

We set the devices for an acquisition rate of one-hourly 
fixes, which were left for 43 h, as the GPS constellation 
orbital period is c. 11  h 58  min, resulting in more than 
3 complete satellite constellation cycles during a 36-h 
period [19, 27]. The units were attached horizontally on 
the upper side of a branch at breast height. Location data 
were recorded on on-board memory, with the capability 
of remote download via an ultra high frequency (UHF) 
link, and included date, time, latitude, longitude, altitude, 
number of satellites, HDOP, eRes, and temperature.

GPS device performance
Fix success rate (FSR) was calculated for each site by 
dividing the number of successful fixes by the total num-
ber of fix attempts. We quantified the accuracy of the 
GPS unit as the location error (LE), which was calculated 

as the shortest distance on the WGS84 ellipsoid between 
the known location of the GPS unit deployed, determined 
using a handheld GARMIN GPSmap 60CSx (accuracy 
of < 10 m for 95% of locations) that was ground-truthed 
by satellite map matching of known landmarks, and the 
location that was recorded by the Lotek GPS unit (R 
package ‘geosphere’; [28]). To assess accuracy and com-
pare between sites, we calculated the median (x̃LE), and 
the 75% and 95% quantiles.

Canopy closure
We quantified obstruction due to vegetation by meas-
uring canopy closure, defined as the proportion of sky 
hemisphere that is obscured by vegetation when viewed 
from a single point [29]. Canopy closure ranges from 0 
(no obstruction) to 1 (complete obstruction). To quan-
tify canopy closure, we used a Fujifilm XT-2 with an 
18–55  mm F2.8–4 lens to take perpendicular vertical 
photographs at each test location, which we then aggre-
gated and binarised using open source editing software 
(details in Additional file 1, and see Additional file 1: Fig. 
S2 and Fig. S3) [30]. We quantified the percentage of sky 
visible to the camera as a proportion of white to black 
pixels as an approximation of canopy cover.

Topographic obstruction
To quantify the obstruction of satellite signals due to 
the topography, we measured the amount of sky not 
impeded in the hemisphere above the horizon, termed 
the sky view factor (SVF). SVF values of 0 indicate that 
the sky above a point is completely obstructed (e.g. in a 
cave), whereas a value of 1 indicates the sky is completely 
open (e.g. on top of a mountain). We calculated SVF from 
a 15-m resolution Digital Elevation Model of New Zea-
land [31]. The R package ‘horizon’ was used to quantify 
the amount of topographic obstruction at 32 angles up 
to a distance of 3000 m [32, 33]. Stationary test locations 
were overlaid and cell values at these points were used in 
analyses (Additional file 1: Fig. S4). The range of sky avail-
ability for the test locations ranged from 0.913 to 0.989 
(mean ± SD = 0.958 ± 0.022).

Statistical analysis
We used a multimodel inference and model averaging 
approach to assess the influence of vegetation and topog-
raphy (environmental predictors) on fix success rate (FSR), 
and to assess the influence of the environmental predic-
tors, as well as horizontal dilution of precision, the num-
ber of satellites and eRes (technical predictors) on location 
error (LE) [34, 35]. We assessed all combinations of the 
predictors. For both analyses, we included the stationary 
test location as a random factor to account for the non-
independent location fixes taken at each site [36]. We 
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used a model-selection approach to rank models based on 
Akaike’s Information Criterion corrected for small sample 
size (AICc), also calculating the Akaike weight [34, 37]. To 
determine averaged predictor coefficients we used a full-
model-average calculation, which averages over all mod-
els in proportion to their Akaike weight, rather than only 
the models in which the predictor appears—this is to pre-
vent biasing the averaged predictor coefficient away from 
zero [34, 35]. Predictors were considered significant if the 
model-averaged confidence intervals did not overlap with 
0. Model fit was assessed using pseudo-R-squared (here-
after  R2) for mixed-effects models, and the value reported 
is the marginal  R2, which compares the model with fixed 
factors against a null model containing only the random 
factors [38–40].  R2 is typically considered a measure of a 
model’s ability to explain variation within the dataset, so 
we considered the explanatory power of each predictor 
variable as the R2 value for models that contained solely 
that predictor variable (and the random factor of ‘site’) 
[18, 34, 38]. Both generalised linear and linear mixed 
models were fitted using the ‘lme4’ package in R [41], and 
the model-selection process was implemented using the 
‘MuMIn’ package [40]. For both fix success rate and loca-
tion error analyses, correlation between predictors was 
checked using variance inflation factors (VIF—all param-
eters were below 2), and all models were checked for over-
dispersion [42].

Fix success rate (FSR)
For FSR we used a binomial generalised linear mixed 
model (GLMM) to evaluate the influence of the canopy 
closure and sky view factor. To be directly comparable, 
both variables were scaled by centering and dividing by 
2 standard deviations. In total, four models were fitted to 
FSR, which resulted from all the combinations of the two 
fixed factors, including a global model with both vari-
ables, and a null model without any predictors variables.

Location error (LE)
For location error, we used a linear mixed model (LMM) 
to assess the influence of canopy closure, sky view fac-
tor, horizontal dilution of precision (HDOP), the number 
of satellites, and eRes on the natural logarithm of linear 
error  (LElog–to meet assumptions of normality). Due to 
the different scales of the predictor variables of LE in the 
LMM, and to make them directly comparable, we scaled 
all predictor variables by centering and dividing by 2 
standard deviations. In total 32 LMMs were fitted to LE, 
which is all combinations of the five fixed factors includ-
ing the global and null models. Models were run with and 
without a very large outlier to assess the outlier’s influ-
ence, but the results did not fundamentally change, and 
the presented results include all data.

Case study with kākā (Nestor meridionalis)
To assess the fix success rate of GPS devices with SWIFT 
fixes when deployed on animals, we attached 10 SWIFT 
GPS devices to kākā, which are forest-dwelling parrots 
endemic to New Zealand  (Additional file  1: Fig. S5 and 
Fig. S6). Kākā typically occupy areas with dense canopy, 
and forage both in the canopy and on the ground [43, 
44], and are therefore considered a suitable test species 
for forested conditions. We fitted nine Lotek PinPoint 
GPS VHF-350 devices with SWIFT GPS fixes (PP350—
18.4  g with 350 mAh battery) and one Lotek PinPoint 
GPS VHF-450 device with SWIFT GPS fixes (PP450—
19.1 g with 450 mAh battery) to the kākā using a back-
pack harnesses with a weak-link [45]. The PP350 were set 
to fix a location every 3 h, and every 2 h for the PP450, 
which was the same device design but with a larger bat-
tery. Both devices had VHF radio-beacon capabilities, 
which was enabled at 40 pulses per minute (ppm) for a 
4-h window each day to locate the kākā; UHF capabilities 
to download the data to a Lotek PinPoint Commander 
unit, which was enabled for a 10-h window each day; and 
a three-axis accelerometer, which recorded an overall 
dynamic body acceleration (ODBA) value once per min-
ute for the full tracking period.

Results
Fix success rate
The fix success rate (FSR) ranged from 56 to 100% 
between sites (µFSR ± SD = 83.3% ± 15.3%). FSR 
decreased with increasing canopy cover, although suc-
cessful fixes remained above 90% until canopy closure 
exceeded 0.9, after which the FSR decreased sharply 
(Fig.  1). The top-ranked model included only canopy 
closure, and the second-ranked model included canopy 
closure and sky availability (Table  1). The full model-
averaged coefficients indicated a negative and signifi-
cant relationship for FSR in relation to canopy closure 
(increasing canopy closure resulted in less success-
ful fixes) ( βcanopy = − 4.66, 95% CI [− 7.02 to − 2.30]) 
(Fig. 1) and that topographic obstruction had a negative 
but weak relationship with FSR ( βSVF = − 0.12, 95% CI 
[− 1.16 to 0.47]) (Table 2). The model containing canopy 
cover alone (with site as a random factor) had an R2 of 
0.424, and the model with sky view factor alone had an 
R2 of 0.024.  

Location error
The distribution of location errors was strongly positively 
skewed (Fig. 2); with 50% of the locations falling within 
8.65 m of the true location, 79.7% within 30 m and 95% of 
values within 271 m. 2.3% of all locations exceeded 1 km. 
When 6 or more satellites were used, 50% of the locations 
fell within 4.92 m and 95% of locations fell within 18.6 m 
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(Table  3). The topographic obstruction had an average 
between sites of 95.8% (± 0.02% SD), and canopy closure 
had an average of 77.0% (± 23.6% SD) (Additional file 1: 
Table S1).

Model selection revealed eight models that were 
within an AICc < 10 (Table  4, full output in Addi-
tional file 1: Table S2). The top-ranked model included 
HDOP, the number of satellites, and canopy closure. 

The second-ranked model included HDOP, the num-
ber of satellites, and sky view factor. The full model-
averaged coefficients suggested that the magnitude 
of location errors  (LElog) was influenced significantly 
by HDOP (larger HDOP resulted in larger errors: 
βHDOP = 0.956, 95% CI [0.733 to 1.178]—Fig. 3) and the 
number of satellites (more satellites resulted in smaller 
errors: βsatellites = − 0.907, 95% CI [− 1.234 to − 0.579]) 
(Table  4, Fig.  4 and Additional file  1: Fig.  S7). Denser 
canopy closure resulted in larger errors ( βcanopy = 0.507, 
95% CI [− 0.333 to 1.348] Additional file  1: Fig. S8), 
and explained the most variation in the dataset when 
considered as the sole predictor (R2 = 0.256) (Table 5). 
There were weak relationships between sky view factor 
(SVF) and eRes (Additional file  1: Fig. S9). The R2 for 
the model with canopy closure as the sole predictor was 
the largest with 0.256, followed by satellites with 0.191, 
HDOP with 0.133, SVF with 0.126, and eRes with 0.029.   
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Fig. 1 Fitted binomial generalised linear mixed model of the proportion of successful fixes (FSR) as a function of canopy closure. Sky availability due 
to topography was also included as a fixed-effect, and the stationary test location was included as a random effect. Psuedo-R2 was 0.401

Table 1 Models fitted to fix success rate (FSR) of GPS units tested in stationary sites (n = 11) under varying habitat and topographic 
conditions

R2m is the theoretical marginal pseudo-R2, k is the number of parameters, AICc is the corrected Akaike Information Criterion, ΔAICc is the difference in corrected 
Akaike Information Criterion between the top model and the ith model, and ω is the Akaike weight

Rank Model parameters R2m k AICc ΔAICc ω

1 Canopy closure 0.424 3 359.62 0 0.66

2 Canopy closure + sky view factor 0.407 4 360.97 1.36 0.34

3 Null 0.000 2 378.25 18.6 0.00

4 Sky view factor 0.024 3 379.01 19.4 0.00

Table 2 Coefficient estimates and confidence intervals for 
scaled predictor variables included in LMM model selection, 
ordered by the magnitude of the coefficient estimate

Confidence intervals that did not overlap 0 were considered significant and are 
shown in bold.  R2m is the marginal R-squared for the model that contained only 
that predictor variable

Predictor variable 2.5% CI Estimate 97.5% CI R2m

Canopy closure − 7.02 − 4.66 − 2.30 0.424
SVF − 1.16 − 0.12 0.47 0.024
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Deployment on kākā
The SWIFT GPS device deployment on kākā ranged in 
duration from 111 to 163  days (mean = 144 ± 16  days 
SD), and gathered between 725 and 1257 successful fixes 

for each individual for the PP350 tags (mean = 1016 ± 168 
successful fixes SD), and 1727 fixes for the PP450 tag 
(Table 6) before the battery was exhausted [46]. The aver-
age time to acquire the GPS ephemeris for all individu-
als and all locations was 9.38 s. The resulting fix success 
rate (FSR) varied from 63.9 to 90.2% (mean = 78.4 ± 8.2% 
SD between individuals). Two of these individuals (45509 
and 45511 in Table  6) nested in tree cavities, which 
resulted in several months where FSR dropped below 
10%. When these two kākā were removed, the average 
FSR for the remaining 8 individuals was 81.6% (± 5.0% 
SD). In total, there were 10,755 successful location fixes 
from 13,590 attempts for ten individuals, providing an 
average of 2.90 successful locations and 3.73 attempted 
locations per mAh of battery for the PP350, and 3.83 suc-
cessful locations and 4.56 attempted locations per mAh 
of battery for the PP450.
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Fig. 2 Histogram of location error in original scale (A) and  log10 scale (B) to illustrate the positively skewed distribution of location errors. Plot A is 
truncated at an error of 100 m to emphasise the shape of the distribution (33 values were removed). Plot B contains all values besides one location 
that had a location error of 2566 km, which was removed for clarity—the next largest value is 5.5 km (total n = 393)

Table 3 Median and frequency percentiles for location errors 
for a given number of satellites in a stationary test in varying 
vegetation and topographic conditions

The proportion is the percentage of locations derived from a given number of 
satellites, and x̃LE is median location error

Satellites n Proportion 50% (x̃LE) 75% 95%

3 59 15.0% 38.5 204 2739

4 86 21.8% 18.2 38.1 251

5 85 21.6% 9.4 20.5 75.3

6 87 22.1% 6.9 10.8 23.7

7 62 15.7% 4.0 7.2 14.6

8 15 3.8% 3.3 5.5 6.5

All 394 100% 8.65 21.6 271

Table 4 Models with AICc < 10 (full table in Additional file 1: Table S2) fitted to the natural logarithm of location error (LElog) for GPS 
devices tested in stationary sites (n = 11) under varying habitat and topographic conditions

Explanatory variables are the canopy closure due to vegetation, sky view factor due to topography (SVF), horizontal dilution of precision (HDOP), the number of 
satellites used to derive the fix, and a proprietary eRes metric. R2m is the theoretical marginal pseudo-R2, k is the number of parameters, AICc is the corrected Akaike 
Information Criterion, ΔAICc is the difference in corrected Akaike Information Criterion between the top model and the ith model, and ω is the Akaike weight

Rank Model parameters R2m k AICc ∆AICc ω

1 HDOP + satellites + canopy closure 0.381 6 1307.67 0 0.27

2 HDOP + satellites + SVF 0.36 6 1307.73 0.06 0.26

3 HDOP + satellites + canopy closure + SVF 0.396 7 1308.36 0.69 0.19

4 HDOP + satellites 0.286 5 1309.16 1.49 0.13
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Discussion
We have provided the first performance assessment of 
GPS devices with SWIFT fixes under forested condi-
tions to inform future wildlife tracking studies. Our 
results indicate that the SWIFT GPS devices performed 
well under all but very dense canopy, with an average 
FSR between 11 stationary test sites of 83.3 ± 15.3% SD, 
and an FSR for non-nesting South Island kākā (Nestor 
meridionalis meridionalis) of 81.6 ± 5% SD. The similar-
ity between the stationary test and the field test results 

suggests that the stationary test locations were represent-
ative of kākā habitat, which is typically native New Zea-
land forest [43, 47], although as a volant species locations 
might have been taken when the kākā were flying above 
the canopy. Topographic obstruction had little measura-
ble effect on FSR, although a narrow range of topographic 
conditions were available in the study area, and topogra-
phy will likely be more important in more mountainous 
areas [24]. The FSR is within the range of standard GPS 
units deployed on wild animals; for Sirtrack devices on 
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Fig. 3 Logarithmic scale  (log10) distribution of linear error (LE) as a function of horizontal dilution of precision (HDOP)  (log10) for all tags
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error is on base 10 logarithmic scale. Bars represent 25%, 50% (median), and 75% quantiles. A location with a location error of 2566 km was removed 
for clarity—the next largest value is 5.5 km (total n = 393)
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the same species FSR can range from an average of 64.8% 
(range 24.7–74.0%) [22] to 90.8% (range 86.4–94.1%) 
[23]. For other manufacturers and species, FSR values are 
typically in the range of 60–90% [17–19].

Despite the shorter satellite signal acquisition window 
afforded by the SWIFT algorithm compared to stand-
ard GPS devices; most locations were still accurate. The 
median location error for all locations of 8.65  m was 
similar to standard GPS fixes (5.5–20 m), although the 
95% location error of 271  m was larger than that for 
standard GPS fixes (20–80 m) [18, 19, 26]. The SWIFT 
location errors were reduced substantially when six or 
more satellites were used (4.92  m and 18.6  m for 50% 
and 95%, respectively). These locations were more 
accurate than Fastloc locations, of which 50% of values 
fell within 36 m and 95% within 724 m when four satel-
lites were used, which reduced to 18  m and 70  m for 
50% and 95% when 6 or more satellites are used [13]. 

However, a significant advantage of Fastloc GPS devices 
is that they acquire GPS ephemeris data in 10 s of mil-
liseconds, compared to 5–12 s for SWIFT GPS devices, 
and will therefore be more suitable for briefly surfacing 
marine animals. This is a domain where Fastloc GPS 
devices have been widely applied with great success [48, 
49], and where SWIFT GPS devices will have little util-
ity. Fastloc devices also process and compress signals 
on-board the tag, which can then be transmitted over 
the Argos network [50]–which is not currently a feature 
for SWIFT GPS devices. An additional consideration 
when using GPS devices that post-process locations is 
their inability to use geo-fencing, as the GPS device is 
not aware of its own position.

Similarly to fix success rate, the precision of locations 
was also influenced by canopy closure, with increas-
ing median errors at higher canopy closure values, and a 
larger number of outliers when canopy closure was above 
0.90. The poor explanatory power of technical factors 
such as horizontal dilution of precision and the number 
of satellites echoes previous studies that have expressed 
caution in evaluating the accuracy of a location based on 
these factors alone [15, 18, 19]. However, the more accu-
rate locations do result from a greater number of satel-
lites, with 95% of location errors being less than 18.6  m 
when 6 or more satellites were used (41.6% of all locations, 
n = 164). The proprietary eRes metric did not appear to 
provide any value for assessing the accuracy of a location.

The field testing on kākā suggests that SWIFT fix 
devices likely have greater battery efficiency than stand-
ard fix devices, although battery capacity is dependent on 

Table 5 Coefficient estimates and confidence intervals for 
scaled predictor variables included in LMM model selection, 
ordered by the magnitude of the coefficient estimate

Confidence intervals that did not overlap 0 are shown in bold. R2m is the 
marginal R-squared for the model that contained only that predictor variable

Predictor variable 2.5% CI Estimate 97.5% CI R2m

HDOP 0.733 0.956 1.178 0.133
Canopy closure − 0.333 0.507 1.348 0.256

Satellites − 1.234 − 0.907 − 0.579 0.191
SVF − 0.932 − 0.254 0.424 0.126

eRes − 0.108 0.012 0.132 0.029

Table 6 Performance of GPS units deployed on 10 kākā at Orokonui Ecosanctuary

Days—number of data collection days; n—number of successful fixes; FSR—fix success rate (proportion of successful fixes/failed fixes). Cavity-nesting females are 
shown in bold, and the PinPoint 450 device with a larger battery and shorter fix interval is shown in italics

Kākā GPS unit performance

ID Sex Age Origin Days n FSR

45505 M 1 Orokonui 140 1727 0.84

45506 M 10 Orokonui 148 1003 0.78

45507 M 5 Captive 162 1128 0.81

45508 F 1 Orokonui 163 1257 0.90

45509 F 3 Orokonui 128 725 0.64
45510 F 2 Orokonui 111 828 0.73

45511 F 2 Orokonui 138 803 0.67
45512 M 3 Captive 157 1108 0.83

45513 M 10 Captive 149 1034 0.80

45514 F 8 Orokonui 143 1142 0.83

Mean 4.5 144 1076 0.78

 ± SD 3.6 16 285 0.08

Mean without nesting individuals 0.82

 ± SD without nesting individuals 0.05
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many factors, and information such as battery capacity 
in mAh is rarely reported in the literature, making com-
parison difficult. The PP350 devices tested in this study 
averaged 3.73 attempted locations per mAh, and the 
PP450 device had 4.56 attempts/mAh, which is similar to 
4.67 attempts/mAh by PP120 devices with SWIFT fixes 
in [14], and 4.95 attempts/mAh by PP50 devices with 
SWIFT fixes in [51]. A comparable estimate for standard 
GPS fix devices is 0.63 attempts/mAh for Lotek PinPoint 
120 devices [14]. Other estimates of attempts/mAh range 
from 0.10 to 1.29 for low-cost custom-built standard fix 
devices weighing 84–240 g [52–54].

Global Positioning System (GPS) devices with SWIFT fixes 
and similar ‘snapshot’ algorithms show promising potential, 
even in heavily vegetated areas, although ~ 20% of locations 
might have errors greater than 30 m, which should be con-
sidered when planning a study using this technology. Occa-
sionally location errors up to several kilometres can occur 
in SWIFT fix datasets, but these are usually straightforward 
to filter out using species-specific movement capabilities. 
For migratory species with sparse location fixing schedules, 
it would be harder to correctly identify erroneous locations 
in order to remove them. For this we recommend a method 
that incorporates the observed behaviour of the animal and 
the number of satellites, such as in Shimada et al. [55].

As GPS devices become smaller and lighter to track 
increasingly smaller species, innovative use of algo-
rithms such as those that acquire the GPS ephemeris will 
increase unit deployment time and location frequency 
[56, 57]. An increase in efficiency will enable the col-
lection of richer data from additional sensors including 
accelerometers, proximity sensors, heart rate monitors, 
and video cameras. When combined with powerful com-
putational approaches that can accommodate multiple 
data streams such as hidden Markov models [58], state–
space models [59, 60], and machine learning methods 
[61, 62], finer-scale and subtler behaviours might be iden-
tified, providing more comprehensive insights into ani-
mal behaviour, movement and ecology [3, 5–7].

Conclusions
The primary improvement of SWIFT fixes compared to 
standard GPS devices is a battery-saving optimisation 
that reduces energy consumption, allowing users either to 
extend the length of deployment, or to increase the loca-
tion frequency. The fix success rate of SWIFT GPS devices 
was found to be similar to standard GPS devices, even in 
dense canopy, although ~ 20% of locations may have loca-
tion errors greater than 30 m. As performance is depend-
ent on the environmental conditions present at the study 
site, it is recommended to test any GPS devices under 
expected study conditions prior to deployment on animals.
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Additional file 1: Figure S1. The ten Lotek GPS devices (18.4 – 19.1 
grams) that were used in a stationary test and to collect GPS location data 
of the forest parrot kākā. These devices used a SWIFT fix algorithm. The 
shorter antenna is for receiving satellite data, and the longer antenna is 
forVHF and UHF communication. One PinPoint VHF 450 tag (foreground) 
was used, which had a larger battery and lighter and more flexible 
antenna than the 9 PinPoint VHF 350 tags used. Figure S2: Perpendicular 
canopy closure photographs superimposed with a transparency of 50% 
to illustrate alignment and increased photograph coverage of the sky. 
Figure S3: Three vertically-taken canopy closure photographs (panel ‘a’) 
of varying canopy cover that have been binarised (panel ‘b’) using the 
free and open-source software program Krita. Only a single photograph 
is shown for clarity, but percentages are the result of the average of two 
perpendicular photos. 45508, 45510 and 45507 are the ID numbers of the 
devices. (Table S1). Figure S4: Study area showing the sky view factor 
calculated using the ’horizon’ package (Van Doninck 2018). The Orokonui 
Ecosanctuary fence is shown as a black line, and the stationary test loca-
tions are shown as red points. Sky view factor values at the test locations 
ranged from 0.920 to 0.989. Figure S5: Kākā (Nestor meridionalis) with 
a GPS device fitted using a backpack harness with a weak-link [45]. The 
shorter aerial is used for receiving GPS signals, and the longer aerial is for 
VHF and UHF transmission. Figure S6: Kākā with GPS device in-situ at 
a supplementary feeding station. Smaller antenna is for connection to 
satellites for GPS, and longer antenna is for VHF and UHF communication. 
Figure S7: Cumulative distributions of location error for a given number 
of satellites. Values for a given number of satellites are listed in Table 5. 
Figure S8: Results of the stationary GPS test with location error in relation 
to canopy closure at each site. Location error is on the base 10 logarithmic 
scale. Bars represent 25%, 50% (median), and 75% quartiles. Figure S9: 
Logarithmic scale (log10) distribution of Linear Error (LE) as a function 
of eRes (proprietary error metric for SWIFT fixes) for all tags. Table S1: 
Stationary test results of Lotek GPS units that used a SWIFT fix algo-
rithm and were tested in kākā (Nestor meridionalis) habitat in Orokonui 
Ecosanctuary, New Zealand, ordered by ascending mean canopy closure 
(CC).  SVF is the proportion of sky that is unobstructed due to topography. 
CC is the mean canopy closure due to vegetation calculated from two 
photographs taken perpendicularly. FSR is the Fix Success Rate, and  x̃LE 
is the median of location error for each tag. Table S2: Models with AICc < 
10 fitted to the natural logarithm of location error (LElog) for GPS devices 
tested in stationary sites (n = 11) under varying habitat and topographic 
conditions. Explanatory variables are the canopy closure due to vegeta-
tion, sky view factor due to topography, horizontal dilution of precision 
(HDOP), the number of satellites used to derive the fix, and a proprietary 
eRes metric. R2m is the theoretical marginal pseudo-R2, k is the number 
of parameters, AICc is the corrected Akaike Information Criterion, ΔAICc 
is the difference in Akaike weight between the top model and the ith 
model, and Ω is the Akaike weight.         
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