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TELEMETRY CASE REPORT

Animal-borne acoustic data alone can 
provide high accuracy classification of activity 
budgets
Andréa Thiebault1* , Chloé Huetz2, Pierre Pistorius1,3, Thierry Aubin2 and Isabelle Charrier2 

Abstract 

Background: Studies on animal behaviour often involve the quantification of the occurrence and duration of various 
activities. When direct observations are challenging (e.g., at night, in a burrow, at sea), animal-borne devices can be 
used to remotely record the movement and behaviour of an animal (e.g., changing body posture and movement, 
geographical position) and/or its immediate surrounding environment (e.g., wet or dry, pressure, temperature, light). 
Changes in these recorded variables are related to different activities undertaken by the animal. Here we explored the 
use of animal-borne acoustic recorders to automatically infer activities in seabirds.

Results: We deployed acoustic recorders on Cape gannets and analysed sound data from 10 foraging trips. The dif-
ferent activities (flying, floating on water and diving) were associated with clearly distinguishable acoustic features. We 
developed a method to automatically identify the activities of equipped individuals, exclusively from animal-borne 
acoustic data. A random subset of four foraging trips was manually labelled and used to train a classification algo-
rithm (k-nearest neighbour model). The algorithm correctly classified activities with a global accuracy of 98.46%. The 
model was then used to automatically assess the activity budgets on the remaining non-labelled data, as an illustra-
tive example. In addition, we conducted a systematic review of studies that have previously used data from animal-
borne devices to automatically classify animal behaviour (n = 61 classifications from 54 articles). The majority of stud-
ies (82%) used accelerometers (alone or in combination with other sensors, such as gyroscopes or magnetometers) 
for classifying activities, and to a lesser extent GPS, acoustic recorders or pressure sensors, all potentially providing a 
good accuracy of classification (> 90%).

Conclusion: This article demonstrates that acoustic data alone can be used to reconstruct activity budgets with 
very good accuracy. In addition to the animal’s activity, acoustic devices record the environment of equipped animals 
(biophony, geophony, anthropophony) that can be essential to contextualise the behaviour of animals. They hence 
provide a valuable alternative to the set of tools available to assess animals’ behaviours and activities in the wild.
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Background
Studies on animal behaviour often involve the quantifi-
cation of individuals’ activities [1], from the definition of 
an ethogram to the quantification of an activity budget 
[2]. Knowledge on how individuals allocate their time 
according to different activities is important in terms of 
understanding their flexibility towards changes in the 
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environment, such as variations in temperature [3, 4], 
habitat [5, 6], social systems [7] or prey availability [8, 9].

Traditionally, the assessment of activity budgets has 
required long hours of observations in the field [10], and 
have been applied to various species (e.g., in primates 
[11–13], birds [14, 15], deer [16], rodents [17], fish [18], 
bats [19], insects [20], seals [21], cetaceans [22]). How-
ever, this is not always practical. For example, when ani-
mals are active at night, when they spend time in hidden 
enclosed places (e.g., burrow), or when they travel long 
distances in remote areas (e.g., dense forest, ocean) direct 
observations are hindered. In addition, the presence of a 
human observer can potentially disturb the animals and 
impact the integrity of collected information on their 
behaviours [23]. Recent technological developments have 
given rise to devices that can be deployed on animals (i.e., 
animal-borne devices) and that can thus remotely record 
variables that are related to different activities under-
taken by study animals. This has greatly enhanced our 
understanding of time allocation in elusive wild popula-
tions [24–27].

Several types of instruments have been used to study 
animal activity budgets. First, changes in the geographic 
location of an animal may inform on its activity. From the 
recordings geographical positions using tracking devices 
such as radio-tracking, or global positioning systems 
(GPS), the speed [28, 29], the sinuosity [30, 31] or a com-
bination of the two [32] can be derived to infer behav-
ioural activities. Second, if species are moving through 
different environments to engage in various activities, 
distinctive features of the environments can be recorded 
and related to activities. For example, in seabirds, sensors 
recording the accumulated time spent immersed in water 
inform on the time spent floating on the water or diving 
[33–36]. Similarly, temperature loggers have been used to 
estimate the time spent in different environments, such 
as in the water, in the air and on the land [37, 38]. For 
diving species, detailed information on animals’ diving 
behaviours can be obtained from the use of time depth 
recorders [39–41]. Ultimately, combining data from dif-
ferent sources, e.g., recordings of the depth, the tempera-
ture and the light, have been shown to allow for robust 
interpretations of activities undertaken by elusive ani-
mals [42].Third, since the animal’s behaviour is the direct 
consequence of its coordinated body movement [43], the 
body motion and posture of an animal can be monitored 
and allow researchers to make inferences about an ani-
mal’s behaviour. Acceleration sensors have hence often 
been used to study animal behaviour [44]. The further 
design of bi- [45] and then tri-axial accelerometry [46] 
allowed for more detailed study of animal movements 
in three dimensions and increased the number of differ-
ent activities that could be recorded and automatically 

identified [46]. In addition to time-activity budgets, such 
information is increasingly used to assess energy expend-
iture during each activity [47]. Providing that sufficient 
knowledge on the species and their movement during 
different activities are available to correctly interpret the 
motion in every axis, accelerometers are extremely pow-
erful tools to record animals’ activities remotely. As such, 
they have been widely used on a great diversity of species 
(reviewed in [48]). However, accelerometry data is lim-
ited in terms of surrounding environmental information 
it can yield, with such information potentially underpin-
ning meaningful interpretation of these behaviours.

Animal-borne acoustic devices can record and monitor 
the vocalization of animals in various contexts. In addi-
tion to these vocalizations, sound recordings can also 
provide information on the activities of animals, since 
different activities generate different sounds and back-
ground noise. Hence, information on speed of movement 
(particle flow), different environments (open air, shelter, 
water), environmental interactions (browsing, gnaw-
ing, digging, scratching, diving, etc.) can be captured. 
With the recent advancement of acoustic recording tech-
nologies, this concept has been explored and applied to 
visually identify the flipper strokes of seals [49] and the 
foraging behaviour of deer [50] and bats [51] from spec-
trograms. Furthermore, the automatic detection of the 
behaviours and activities of birds from sound data have 
previously been demonstrated [52]. Acoustic recorders 
have also been used to improve automatic classification 
of behaviours from accelerometers [53, 54].

Here, we aimed to first solve the challenge of record-
ing sound data through instrument deployment on wild 
free-ranging seabirds, i.e., species that move both in the 
air and in the water, where most dive to feed on marine 
resources. Second, we developed a procedure based on 
existing statistical learning methods to automatically 
identify the activities of equipped individuals, exclu-
sively from animal-borne acoustic data, to assess their 
time-activity budgets. Our study species is the Cape 
gannet Morus capensis, an endangered seabird endemic 
to southern Africa [55]. This species has been recently 
classified as endangered by the IUCN red list because of 
a drastic loss of more than 50% of the population over 
three generations [56]. This has mostly been related to a 
massive decrease of their natural feeding resources due 
to fisheries [57–59]. Cape gannets feed mainly on small 
pelagic fish, sardines Sardinops sagax and anchovies 
Engraulis encrasicolus [60]. Their foraging effort, in terms 
of trip duration and time spent in different activities, 
reflects the abundance of their natural prey in the local 
marine environment [61–64]. Furthermore, their forag-
ing effort directly influences their breeding investment 
and success [65, 66]. As a consequence, the monitoring 
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of their foraging activities at sea is of particular interest in 
relation to both the local marine ecosystem and the man-
agement of this threatened species. We deployed acous-
tic recorders on chick-rearing Cape gannets to record 
their behaviour at sea (data from 10 adults used in this 
study). Based on previous work with observations from 
bird-borne video cameras [67] we identified three differ-
ent main activities: floating on the water, flying, and div-
ing. These activities are associated with different sounds 
that can be identified by a trained human ear so that they 
were manually labelled on a subset of the data set (data 
from four individuals randomly selected representing 
~ 33 h of acoustic data). Thirty five acoustic features were 
then extracted to acoustically describe the activities. A 
supervised learning algorithm was trained on the labelled 
data to automatically identify activities on non-labelled 
data (total of ~ 93  h of acoustic data). To do this, five 
types of supervised learning algorithms were tested using 
the Classification Learner App (Statistics and Machine 
Learning Toolbox, Matlab R2019b) and the k-nearest 
neighbour model was finally chosen for its performance 

on the diving-class activity (rare class of high inter-
est). The resulting time-activity budget of foraging Cape 
gannets, as quantified from acoustic data exclusively, 
is presented and compared with results obtained from 
previous studies on the same species but using different 
devices. Furthermore, we conducted a systematic review 
on studies that automatically classified activities from 
animal-borne devices and compared the performances 
obtained from the analysis of various types of devices.

Results
Different sounds for different activities
Each activity undertaken by the Cape gannets when 
foraging at sea was associated with different sounds 
recorded by the bird-borne acoustic devices (Fig. 1A).

Different values of acoustic features were measured for 
each activity (Fig. 2), as calculated on sound segments of 
length ~ 1.4 s (corresponding to  214 samples). For exam-
ple, the sound spectrogram (Fig.  1A) shows that the 
sound is louder and spans a wider frequency range dur-
ing flying compared to diving or when floating on water, 

Fig. 1 Illustration of (A) the sound spectrogram along with (B) the manual identification and labelling of activities and (C, D) the predictions before 
and after revision. Three main activities were defined and included in the budget (flying, diving and floating on the water) and two additional 
transition activities (entering water and taking off ) were used exclusively for the revision algorithm. These transition activities were used to confirm 
dive and flying events, and then merged into their corresponding main activity. Isolated segments were removed and relabelled and predictions 
were smoothed using a moving median over 6 segments
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and this was measured by their mean RMS and spectral 
bandwidth values (see red crosses in Fig. 2A, B). For all 
the features though, the distributions for each activity 
overlap in some way (Fig. 2).

Automatic identification of activities from sound data
Among the five types of supervised learning algorithms 
that were tested (see “Materials and methods”), the 
k-nearest neighbour model was finally chosen, because 

Fig. 2 Density estimation of a selection of acoustic features for each activity (8 out of 21 temporal features, 8 out of 14 spectral features). Means and 
medians are represented by blue and black lines, respectively. The red crosses indicate the values for each feature calculated on the data sample 
illustrated on Fig. 1 (calculated as means on all segments per class)
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its ratio between true and false positives for the diving 
class (of highest interest in our study case) was higher 
than that in other algorithms, still with a similar global 
accuracy.

The classification procedure was able to correctly clas-
sify the activities of Cape gannets (the “labelled set”) 
with a global accuracy of 98.46%. The performances, as 
measured by the global confusion matrix and the ROC’s 
area under the curve (AUC) for each class, varied per 
activity (Additional file  1: Figure S1). The sensitivity 
was lowest for the class ‘diving” compared to the other 
classes (Fig. 3), meaning that over all “diving” segments, 
62.3% (908/1457) were correctly detected (others were 
wrongly classified as floating or flying), whereas for “fly-
ing” and “floating” segments, > 98% of segments were 
correctly detected (Fig. 3). Nonetheless, when diving was 
predicted, it was reliable given the high precision value 
(95.5%, Fig. 3). The classes “floating on water” and “flying” 
were predicted with high accuracy, given the high values 
of both indicators in all instances (> 97%, Fig.  3). Over-
all, the number of false negatives and false positives was 
low, as measured by the high value of “Informedness” at 
97.66% (the multi-class equivalent of the Youden’s index). 
These results were constant among the four individuals 
studied, with the classification performances being simi-
lar between individuals (Additional file 2: Figure S2).

When studied in terms of activity budget (meaning 
that 1.4 s segments are grouped into “events” of the same 
activity), it appeared that the number of predicted events 
were over-estimated, although they were predicted with 
shorter duration (Fig.  3B). Nonetheless, when stud-
ied in terms of time-activity budget, the predicted time 
spent in each activity was very close to the observed time 
(between 0.3 and 1.1% of difference depending on the 
activity, Table 1).

Acoustic‑based time‑activity budget of a seabird
Applying the algorithm to non-labelled data, we found 
that when foraging in December 2015 from Bird Island 
(Algoa Bay, South Africa), chick-rearing Cape gannets 
spent on average 35.1%, 63.7%, and 1.2% of their time 
flying, on the water and diving, respectively. Eight of the 
nine individuals spent most of their time floating on the 
water, although this varied largely per individual (range 
43.3–80.1% of time, Fig.  5, Additional file  5: Table  S1). 
The number of dives estimated per individual also varied 
greatly between individuals, from 23 to 174 dives per trip 
(Fig. 4).

Systematic review on automatic classification 
of activities from animal‑borne devices
We extracted information from 61 reviewed classifi-
cations (54 articles, including our study), published 
between 2000 and the 5th of April 2021, that automati-
cally classified activities using supervised learning algo-
rithms and based on data from animal-borne devices 
(Table 2).

Terrestrial species were by far the most studied spe-
cies (n = 40, Table 2, Fig. 5), followed with aquatic species 
(n = 13) and flying species (n = 8). The most commonly 
used devices were accelerometers (82% of reviewed stud-
ies, Table  2), either alone (n = 34 studies) or in associa-
tion with other devices (n = 16). Acoustic recorders have 
rarely been used in this context as we found only three 
studies that met our criteria for the systematic review. 

Fig. 3 Performances of the algorithm (after classification and 
revision) on the labelled data set (data points correspond to time 
segments ~ 1.4 s) summed over all individual bird files (4 individuals). 
The confusion matrices (squared 3 * 3 matrices) shows the number 
of correctly classified events (True Positives, TP) for each class on the 
diagonal, the number of False Positive (FP) per column for each class 
(except the value on diagonal) and the number of False Negative (FN) 
per line for each class (except the value on diagonal). Performance 
indices of Precision (TP/(TP + FP)) and Sensitivity (TP/(TP + FN)) 
are shown for each class on the bottom row and right column, 
respectively

Table 1 Results of the classification algorithm on the labelled 
data set, when aggregated into behavioural events

Event class Number 
of events

Mean event 
length (s)

Time 
budget 
(%)

True Diving 243 8.3 1.7

Floating on water 318 217.4 56.4

Flying 391 139.0 41.8

Predicted Diving 278 4.6 1.1

Floating on water 567 120.2 57.5

Flying 517 102.8 41.5
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The weight of devices was reported in only 48% of the 
studies and ranged widely for all devices categories 
(Table 2). The different types of devices varied in terms of 
sampling frequency, with the GPS devices being the most 
limited (up to 1 Hz at the highest), while acoustic record-
ers provided the highest sampling frequency (> 10 kHz). 
In comparison, accelerometers were used over a large 
range of sampling rates, from 0.02 to 100  Hz (Table  2). 
Although the sampling frequency did not seem to be 
directly related to the global accuracy, a higher sampling 
frequency seemed to allow for a higher number of activi-
ties studied in the activity budget (Additional file 3: Fig-
ure S3).

The number of activities studied in a budget varied 
greatly among studies, from two to 19 (Table  2), with a 
mode at three activities (Fig.  6). The highest number 
of activities (19, Table  2) was extracted from acoustic 
recorders, followed with a study based on accelerom-
eters (12 activities). The global accuracy of classification 
reported in the reviewed studies varied between 65 and 
100% (Table 2) and this did not seem to be related on the 
size of the different data sets studied (Additional file  4: 

Figure S4). The highest accuracies were obtained from 
accelerometer data (Figs. 5, 6), even though a good accu-
racy (> 90%) could be achieved using data collected from 
all types of devices (Fig. 5). Among all articles reviewed, 
the performance of our classification (98.46%) based 
exclusively on acoustic data appeared very high and dem-
onstrated that the activity budget of wild animals can be 
recorded and reconstructed exclusively from acoustic 
data.

Ultimately, the potentially most important difference 
among the different types of devices in terms of data 
yield might be the nature of other types of information 
provided, in addition to the animal’s activities themselves 
(Table 2). Accelerometers have been used to reconstruct 
the energy budget associated with different activities; 
GPS devices provide information on the geographical 
position and distribution of the animals; pressure sen-
sors provide information on the diving profiles of aquatic 
species. In comparison, acoustic recorders provide infor-
mation on all the sounds surrounding an animal: the 
biophony (including vocalisations from the equipped 
animal, its conspecifics, but also heterospecifics), the 

Fig. 4 Time-activity budgets (% of time spent flying in orange, floating on the water in blue and diving in red) of nine Cape gannets as predicted 
from acoustic data exclusively. The black dots show the number of predicted dives for each individual (y-axis indicated on the right)
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geophony (all natural but non-biological sounds related 
to the habitat), and the anthropophony (human-gener-
ated sounds).

Discussion
The different activities undertaken by our study animals 
were associated with distinguishable sets of acoustic fea-
tures. They could then be automatically identified from 
sound data exclusively, with very good accuracy (98.5% 
global accuracy). Although the performances varied per 
class (i.e., the three main activities, floating on water, fly-
ing, and diving), the precision was consistently very high 
(95.5–99.4%, n = 3 activities) showing that the activities 
could be predicted with high confidence, especially if 
studied as percentage of time spent in each of the activi-
ties. Our results compared favourably to those of other 
studies using acoustic data to infer behaviour [52–54] 
and compared very well to all previously published 
studies that automatically classified activities based on 
animal-borne devices (Fig.  6). Interestingly, our results 

based on acoustic data showed a higher classification 
performance compared to a previous study classifying 
the same activities on the same study species based on 
speed and turning angles derived from geographical loca-
tion data (92.3% global accuracy, 91.8–94.8% precision 
[32]). In addition to high predictive performances, acous-
tic devices provide additional information on the sur-
rounding biophony, geophony and anthropophony that 
can be used to contextualize the observed behaviours. 
They thus appear a valuable alternative to other devices 
for the monitoring of animal’s behaviours.

By inferring the behaviour of birds from acoustic 
data, we were able to estimate the time-activity budget 
of breeding Cape gannets during their foraging trips. 
Our estimations are comparable with previous studies 
on the same species, with Cape gannets always spend-
ing proportionately more time on the water than flying: 
64% and 35% (this study), 58% and 41% (breeding sea-
son 2001–2002 at Bird Island in Lambert’s Bay, based on 
three-dimensional accelerometry data [116]), 68% and 

Fig. 5 Performance of automatic classifications of activity budgets as measured by the global accuracy, as a function of the type of devices used 
in the 61 reviewed classifications (from 54 articles, including our study). Colours indicate a categorisation of species: n = 40 terrestrial species 
(green), n = 13 aquatic species (blue), n = 8 flying species (orange). GPS global position systems. Accel Accelerometers. Other devices deployed 
concomitantly to accelerometers included GPS, gyroscope, magnetometer, pressure sensors, and acoustic recorders [26, 32, 52–54, 68–115]
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31% (breeding season 2012–2013 at Bird Island in Algoa 
Bay, based on geographical location data [117]), respec-
tively. The number of dives predicted in our study was 
also within similar range compared to previous studies: 
23–174 (this study), 10–110 (breeding season 2012–2013 
at Bird Island in Algoa Bay, based on time-depth record-
ers, [118]), 12–218 (breeding seasons 2012 and 2014 on 
Malgas, based on time-depth recorders, [57]).

Various devices are available to remotely record an ani-
mal’s behaviours and activities. Our systematic review 
showed that accelerometers are the devices most com-
monly used for this purpose, even though a good accu-
racy of classification can be obtained from a range of 
devices. The weight of devices did not appear to be the 
most limiting factor, since all types of devices can be 
found at a relatively small size (< 20 g, the smallest device 
being an accelerometer at 2 g). Otherwise, the sampling 
frequency of the different types of devices might also 
be an important factor, since our results suggest that 

a higher sampling frequency may provide access to a 
higher number of recorded activities, and thus a more 
detailed description of the animal’s behaviours. In this 
respect, the most limiting device would be the GPS, and 
the device with the highest potential would be the acous-
tic recorder. Ultimately, if technical aspects can be over-
come (e.g., deployment techniques and weight of devices, 
data analyses and classification algorithm using recent 
machine learning techniques), our systematic review sug-
gested that the most important factor to be considered 
when choosing a device for recording an animal’s activi-
ties should be access to additional information. Indeed, if 
all types of devices can provide a good accuracy of classi-
fication on the animal’s activities, they all record different 
variables. As a consequence, they each provide additional 
information on different aspects related to the animal’s 
behaviours. Accelerometers record the fine-scale move-
ments of animals in three dimensions, and thus provide 
details on movement related activities [48, 116, 119]. In 

Fig. 6 Performance of automatic classifications of activity budgets as measured by the global accuracy, as a function of the number of activities 
in the budget, extracted from 61 reviewed classifications (54 articles, including our study). Symbols indicates the type of animal-borne devices 
used to remotely record the behaviour of study animals and the full red circle indicates the values obtained in our study. Number of activities are 
all integers, but a random horizontal offset was added for the figure display to limit overlap of points. GPS global position systems. Other devices 
deployed concomitantly to accelerometers included GPS, gyroscopes, magnetometer, pressure sensors and acoustic recorders [26, 32, 52–54, 
68–115]
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addition to behavioural activities, accelerometers can be 
used to measure the energy expenditures of animals dur-
ing different activities and thus allow for reconstructing 
dynamic energy budget models [47]. Time-depth record-
ers are best adapted for aquatic animals by providing 
detailed information on their diving behaviour [40, 120, 
121]. In comparison, acoustic recorders do not measure 
the displacement or body movement of animals directly, 
yet our study proved that they can be used alone to 
reconstruct the activities of animals with very high accu-
racy that are comparable to what is obtained using other 
devices, such as accelerometers. In addition, acoustic 
recorders simultaneously record the biophony, geophony 
and anthropophony in the environment of equipped ani-
mals, and thus provide a large diversity of other infor-
mation that can be essential to interpret the animal 
behaviours in a meaningful way. The physiology (heart 
rate) and the breeding behaviour (hatchling sounds in a 
burrow) of some species can be recorded remotely using 
acoustic devices [122]. The surrounding environment of 
equipped animals is also recorded and could help con-
textualize specific behaviours [52]. The vocalizations of 
equipped animals allow the study of variations in social 
interactions and grouping behaviours in different con-
texts [123, 124]. Furthermore, multi-species associa-
tions can be recorded. For example, in our data set, we 
recorded dolphin whistles underwater during some of 
the dives performed by equipped Cape gannets (data not 
shown). We could imagine that interactions between sea-
birds and fisheries or human marine activities could be 
recorded as well. Similar information on the surround-
ing context of animals can also be obtained using ani-
mal-borne video cameras [125–127], but in comparison 
acoustic recorders are much smaller in size and weight 
(which can be crucial for deployments on wild animals), 
they can record continuously for a much longer duration, 
and they record sounds from all directions, where cam-
eras are limited by their field of view. Ultimately, com-
bining different recorders may help reconstruct a more 
comprehensive understanding of animal behaviour in 
their natural environment [42, 53, 54], as long as this is 
done without compromising the welfare and behaviour of 
the study animals [128].

Conclusion
This article demonstrates the use of animal-borne acous-
tic data alone to automatically infer the activities of wild 
elusive animals with high accuracy. In addition to ani-
mal’s activities, acoustic recorders provide information 
on the surrounding environment of equipped animals 
(biophony, geophony, anthropophony) that can be essen-
tial to contextualize and interpret the behaviour of study 
animals. They, therefore, show promise to become a 

valuable and more regularly used alternative to the set of 
devices used to record animal activities remotely.

Materials and methods
Data collection
Fieldwork took place on Bird Island (Algoa Bay, South 
Africa) during December 2015. We deployed twenty 
devices (details below) on chick-rearing Cape gannets to 
record their behaviour while foraging at sea. Four indi-
viduals were randomly selected for manual identifica-
tion of activity and model training. The trained model 
was then applied to automatically predict time-activity 
budget on the data, where the entire foraging trip was 
recorded, which comprised of another six individu-
als (trips not recorded in full resulted from progressive 
water damage).

Deployment procedure
Birds on departure to sea were captured near their nest 
using a pole with a hook on the end. Only one par-
ent was captured per nest and devices were attached 
for one foraging trip only (usually 1–2  days), while the 
partner was on the nest guarding the chick. Nests were 
then monitored every hour from sunrise to sunset, and 
the deployed birds were captured again soon after their 
return to the colony and the devices were retrieved. Birds 
were handled for 8 and 6 min on average for the first and 
second capture, respectively. The handling procedure 
consisted of attaching devices (using adhesive tape, Tesa, 
Germany) and measuring the bird’s body mass for the 
first capture (average 2580 g, n = 10 birds, measured with 
Pesola, Baar, Switzerland, precision 50 g), and retrieving 
devices and taking standard measurements (not used in 
this study) for the second capture. Acoustic recorders 
were deployed in combination with a GPS (global posi-
tioning system) device on eight birds (total mass 60  g, 
2.3% of bird body mass), a GPS and a video camera on 
one bird (90 g, 3.4% of bird body mass), or a time-depth 
recorders and a video camera on 11 birds (80 g, 3.1% of 
bird body mass). The devices had no significant effect on 
the duration of foraging trips, when compared between 
equipped and non-equipped birds (for details see [124]), 
so normal behaviour was assumed. Only the data from 
the acoustic recorders were used in this study.

Acoustic recorders
Audio recorders (Edic-mini Tiny + B80, frequency 
response 100  Hz–10  kHz ± 3  dB, 65  dB dynamic range, 
TS-Market Ltd., Russia, fitted with a CR2450 battery, 
16.2 g, autonomy estimated for ~ 50 h at 22 kHz in our 
study, and provided for 190 h at 8 kHz by the manufac-
turer) were set up to record sound in mono at a sampling 
frequency of 22.05  kHz. They recorded continuously, 
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hence collecting data during the whole foraging trip of 
the birds. The main challenge for collecting such acous-
tic data was to ensure high quality recordings on board 
a flying and diving bird. To limit disturbance from the 
wind, we placed the audio recorder on the lower back of 
the bird, under feathers and facing backwards. In addi-
tion, a thin layer of foam was added after the first deploy-
ment to reduce flow and background noise. We sealed 
the microphones in nitrile glove materials (amplitude 
attenuation of 6  dBSPL both in the air and in the water, no 
modification of the frequency response, as measured in 
the laboratory) to keep the devices sufficiently dry when 
immersed in the sea water but still ensure good quality 
sound recordings (avoiding thick waterproof casing).

Manual identification and label of activities
The activities of Cape gannets when foraging at sea 
were manually identified on a subset of our data set 
(henceforth referred to as “labelled dataset”). The data 
retrieved from four deployed Cape gannets were ran-
domly selected, comprising of ~ 33 h of recordings. Based 
on previous work with observations from bird-borne 
video cameras [67] we identified three different main 
activities: floating on the water, flying, and diving. Those 
three activities are associated with different sounds that 
can clearly be identified by a trained human ear (Fig. 1). 
When the bird is flying, the wind is usually loud and the 
wing flapping can sometimes be heard. When the bird 
is on water the ambient noise is usually less, sometimes 
with water splashing sounds. The take-off is distinguish-
able with loud flapping at a high rate. Gannets dive in the 
water at high speed, up to 24 m   s−1 [129] so they enter 
the water with a loud impact noise, often saturating the 
amplitude of recording. Coming out of the water is also 
usually loud with sounds of rising bubbles. To manually 
label these data, the spectrograms of the selected sound 
data were visually observed and the sound was played 
concomitantly using the software Avisoft-SASLab Pro 
(version 5.2.09, Avisoft Bioacoustics, Germany). A total 
of 318 events “floating on the water”, 391 events “flying” 
and 243 events “diving” were identified and labelled. 
Those labelled data were then used to characterize the 
acoustics properties of each activity and to train the clas-
sification algorithm (using a cross-validation procedure, 
details below).

Characterization of activity from acoustic features
To characterize the bird’s activity from the sound record-
ings, an automatic feature extraction was applied. For 
each sound recording, the algorithm followed four steps. 
First, the sound data were downsampled at 12 kHz. Sec-
ond, to remove low frequency acoustic noise, the sound 
recordings were high-passed filtered (above 10 Hz) using 

a second-order Butterworth filter. Third, the recordings 
were divided into small sound segments of ~ 1.4  s (cor-
responding to  214 samples). This segment length was 
chosen to reflect the dynamic of movement of our study 
species. In particular, the dives last on average 20 s (min-
imum 6  s) and always start with an ‘entering the water’ 
that displays very specific sound features (Fig.  2) and 
lasts 1–2  s. A segment length of  214 (corresponding to 
1.4  s) thus appeared most appropriate. The algorithm 
was also tested using segment lengths of  213 (0.68 s) and 
 215 (2.76  s) and they led to similar results (not shown). 
Fourth, a set of temporal (n = 21) and spectral (n = 14) 
features were extracted from each sound segment to 
acoustically describe the activities. Temporal features 
included envelope features, such as root mean square 
(RMS), peak to peak and peak to RMS values (means 
and standard deviations), and also signal skewness, kur-
tosis, entropy, quantiles and zero crossing rate. Spectral 
features were computed from the power spectrum (Fast 
Fourier transform) and included dominant frequency fea-
tures (dominant frequency value, magnitude, ratio to the 
total energy, bandwidth at − 10 dB, spectral centroid and 
spectral flatness (the two latter computed as per [130]) 
in addition to quartiles of energy and the ratio of energy 
above three fixed thresholds (300, 1500, 5000  Hz). All 
acoustic features were computed using Matlab R2019b 
custom scripts.

The three main activities were re-defined into five cat-
egories: floating on the water, taking-off (three first seg-
ments of flying when preceded with floating on water), 
flying, entering water (first segment of diving when pre-
ceded with flying), and diving. The two transition classes 
were used for the ‘revision algorithm’ as described in the 
following section (“Classification procedure”).

Classification procedure
The labelled data set was used to train and test a classi-
fication algorithm following a fivefold cross-validation 
procedure. Briefly, this procedure consisted of splitting 
the data set into a training set containing 4/5 of the data 
to train the algorithm, and testing it on the remaining 
1/5. This partitioning of the data into training and test set 
was done five times, and performances of the algorithm 
on the test sets were averaged over those five replication.

Five types of supervised learning algorithms were 
tested (Decision trees, Discriminant Analysis, Support 
Vector Machines, Nearest neighbour classifiers and 
ensemble classifiers), with some providing high classifi-
cation results (above 90%). Among them, the k-nearest 
neighbour model was finally chosen, because its ratio 
between true and false positives for the diving class (of 
highest interest in our study case) was higher than that in 
other algorithms, still with a similar global accuracy. The 
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k-nearest neighbour algorithm was implemented with 
five neighbours, Euclidian distance as distance metric 
and equal distance weight.

In all tested models, each sound segment was consid-
ered as independent from each other. As a strong depend-
ence exists (for instance, Cape gannets do not fly just 
after diving without transitioning on the water), a ‘revi-
sion algorithm’ was applied subsequently to the results 
of the classification procedure. First, ‘entering water’ seg-
ments were used to confirm a dive event or deleted if no 
dive segment was following the entering water segment. 
A similar procedure was used with the take-off and flying 
segments. Then, transition segments were merged into 
their corresponding class (entering water was relabelled 
and merged with its associated diving event, similarly for 
take-off merged with flying). Isolated segments (defined 
as segments of one type occurring within a 6-segments 
long window of similar label segments) were removed 
and relabelled so that a coherent 6-segments long win-
dow of unique event was kept (Fig.  1C, D). Finally, 
predictions were smoothed using a moving median 6 
segments-long window (corresponding to ~ 8.42  s) to 
further reduce the rapid changes in the class of segments 
predicted over short duration and thus improve the pre-
diction of events.

All algorithms were implemented using Matlab R2019b 
and the Statistics and Machine Learning toolbox. Four 
metrics were used to assess the accuracy of prediction: 
the global accuracy (total number of segments correctly 
classified divided by the total number of segments), the 
sensitivity (also called recall or true positive rate) which 
measures the proportion of True Positives that are cor-
rectly classified), the precision (also called positive pre-
dictive value) which measures the ratio of the True 
Positives over all Positives), and the “Informedness” (the 
multi-class equivalent of the Youden’s index) which is a 
summarised performance measure of sensitivity and pre-
cision indices for all classes.

Precision = TP/(TP + FP) and Sensitivity = TP/
(TP + FN), where TP stands for True Positive, FP for 
False Positive and FN for False Negative.

Application: acoustic‑based time‑activity budget of Cape 
gannets
The classification algorithm was applied to unlabelled 
acoustic data to predict the activities of Cape gannets 
when foraging. Only the data with full foraging trips were 
kept at this stage. These included six new individuals, 
plus one individual for which part of the data was labelled 
and used in the trained model. The activity of birds was 
then predicted on a total of ~ 93 h of acoustic recordings. 
The time-activity budgets (based on the number and 
duration of events) of unlabelled trips were computed 

by grouping successive segments (1.4 s) of similar activ-
ity into ‘events’ (see, for example, Fig. 1D). For instance, a 
7-s period of diving, corresponding to 5 continuous time 
segments labelled as diving, was considered as one diving 
‘event’.

Systematic review
To place our study into perspective and discuss the use 
of acoustic recorders among the different devices avail-
able for remotely recording and inferring behaviour, we 
conducted a systematic review on articles that automati-
cally classified activities from animal-borne devices. We 
searched for articles in a systematic, repeatable way, 
using the ISI Web of Science Core Collection database. 
Our search included articles in English from 2000 to 
2021, and was based on the following keywords:

(((((((((TS = ((“time budget*” OR "time-budget*" OR 
“activity budget*” OR "activity-budget*" OR “time-activ-
ity budget*” OR “state budget*” OR “behavio*ral state*” 
OR “behavio*r-time budget*” OR “behavio*r* classif*” OR 
“behavio*r discrimination” OR "behavio*r* categor*" OR 
"scene-classif*") AND (recorder* OR device* OR tag* OR 
biologging OR bio-logging OR logger* OR datalogger* 
OR biologger* OR bio-logger* OR collar* OR sensor* OR 
"animal-borne" OR "animal borne") AND (behavio*r*) 
AND (classif* OR accuracy OR “machine-learning” OR 
“machine learning” OR “supervised learning” OR “feature 
learning” OR "infer* behavio*r*"))))))))))).

On the 5th of April 2021 this query resulted in a list 
of 202 articles. These articles were first checked for rel-
evance to our scope: use of animal-borne devices on 
non-human animals to record and infer activity budg-
ets, training of an automatic classification (supervised 
learning algorithm) on data with direct observation 
(visual or video recorded) and with a quantification of 
algorithm performance. This resulted in a final list of 54 
articles from which information was extracted. If sev-
eral classifications were performed in an article (data 
from different devices, or classification on different 
animal’s activities), one line of data was extracted for 
each classification. The information extracted included: 
the species studied, a categorisation of the species (fly-
ing, terrestrial, aquatic), the number of individuals 
equipped, the devices attached on animals (all devices, 
the ones used to infer activities, the ones used to train 
and validate classification), the weight of devices (as a 
mass and as a percentage of the animal’s body mass), 
the size of the data set (as a number of data points), the 
sampling frequency, the number of activities, the list 
of activities, the algorithms used, the global accuracy 
obtained, other performances (when provided), the 
percentage of data used for training, the use (or not) of 
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a cross-validation procedure. The entire data table can 
be found in the Additional file 6: Table S2 from which 
we extracted information provided in the main text. We 
identified five categories of devices used: accelerome-
ters alone, accelerometers combined with other devices, 
GPS devices, acoustic recorders, and pressure sensors. 
We then compared the global accuracy obtained by the 
different studies, as a function of the type of devices 
used to infer activities and the number of activities in 
the budget. We acknowledge that the measure of global 
accuracy is limited and does not inform fully on a clas-
sification performance. In particular, this measure does 
not inform on the performance for the different behav-
iours and can hide a poor performance on rare behav-
iours (which are often of higher interest in biology and 
ecology). However, the measure of global accuracy is 
the most standard performance measure used, and was 
the only one that we could extract from (almost) all 
reviewed articles to allow comparison.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40317- 021- 00251-1.

Additional file 1: Figure S1. Classification performance of the algorithm 
used in the study, showing (A) the global confusion matrix (on labelled 
data) and (B) the receiver operating characteristic curves for the diving, 
floating on water and flying classes, respectively. dv = diving, ent_wat = 
entering water, wat = floating on water, takeoff = taking off, fly = flying.

Additional file 2: Figure S2. Performances of the algorithm (after clas-
sification and revision) on the training data set, for each individual bird file 
(17M, 19M, 34M, 41M). The confusion matrices (squared 3 * 3 matrices) are 
shown together with the Precision (bottom row) and the Sensitivity (right 
column).

Additional file 3: Figure S3. (A) Performance of automatic classifica-
tions as measured by the global accuracy and (B) number of activities in 
the budget, as a function of the sampling frequency at which data were 
recorded, in the 61 reviewed classifications (from 54 articles, including our 
study) [26, 32, 52–54, 68–115].

Additional file 4: Figure S4. Performance of automatic classifications 
as measured by the global accuracy, as a function of the size of data sets 
in the 61 reviewed classifications (from 54 articles, including our study). 
References: [26, 32, 52–54, 68–115].

Additional file 5: Table S1. Number, duration and proportion of time 
spent in each activity (diving, floating on water and flying), for each of the 
9 Cape gannets with full trips recorded. Individual 41M (used in model 
training) is not included here as the trip was only partially recorded. Indi-
vidual 17M was manually labelled on a part of the entire trip.

Additional file 6: Table S2. Systematic review on published articles that 
automatically classified activities based on animal-borne devices.
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