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Abstract 

Agriculture is becoming increasingly reliant upon accurate data from sensor arrays, with localization an emerging 
application in the livestock industry. Ground‑based time difference of arrival (TDoA) radio location methods have the 
advantage of being lightweight and exhibit higher energy efficiency than methods reliant upon Global Navigation 
Satellite Systems (GNSS). Such methods can employ small primary battery cells, rather than rechargeable cells, and 
still deliver a multi‑year deployment. In this paper, we present a novel deep learning algorithm adapted from a one‑
dimensional U-Net implementing a convolutional neural network (CNN) model, originally developed for the task 
of semantic segmentation. The presented model (ResUnet-1d) both converts TDoA sequences directly to posi‑
tions and reduces positional errors introduced by sources such as multipathing. We have evaluated the model using 
simulated animal movements in the form of TDoA position sequences in combination with real‑world distributions 
of TDoA error. These animal tracks were simulated at various step intervals to mimic potential TDoA transmission inter‑
vals. We compare ResUnet-1d to a Kalman filter to evaluate the performance of our algorithm to a more traditional 
noise reduction approach. On average, for simulated tracks having added noise with a standard deviation of 50 m, 
the described approach was able to reduce localization error by between 66.3% and 73.6%. The Kalman filter only 
achieved a reduction of between 8.0% and 22.5%. For a scenario with larger added noise having a standard deviation 
of 100 m, the described approach was able to reduce average localization error by between 76.2% and 81.9%. The 
Kalman filter only achieved a reduction of between 31.0% and 39.1%. Results indicate that this novel 1D CNN U-Net 
like encoder/decoder for TDoA location error correction outperforms the Kalman filter. It is able to reduce average 
localization errors to between 16 and 34 m across all simulated experimental treatments while the uncorrected aver‑
age TDoA error ranged from 55 to 188 m.
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Introduction
The development and implementation of precision farm-
ing practices are enabled by location-aware platforms. 
Such platforms can track assets across holdings enabling 
more efficient management strategies.

Animal tracking has increasingly become an active 
area of both research and applied innovation. Trade-offs 

exist between the types of geolocation employed includ-
ing price, precision, accuracy, power consumption, and 
the frequency of position updates. Geolocation systems 
include angle of arrival (AoA), Doppler approaches, 
power on arrival (PoA), time of arrival (ToA) and time 
difference of arrival (TDoA).

The oldest forms of radio-tracking animals used AoA 
to triangulate the position of individuals fitted with a 
radio transmitter with the first publications appearing 
in the 1960s, such as work conducted on the early sum-
mer activities of porcupines [16]. Modern versions of this 
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technique estimate the AoA by comparing the amplitude 
variation of an antenna array at a signal receiver and 
typically six or more antennas are used for this purpose. 
These techniques can yield very low power use depend-
ing upon the duty cycle and strength of the transmission.

Satellite tracking of wildlife has a long history starting 
with Craighead Jr et  al. [6] tracking elk via the Nimbus 
meteorological satellites using a bulky 11.3 kg collar in 
April of 1970. However, it was the creation of the ARGOS 
system in 1978 [5], utilizing the Doppler shift of a carrier 
frequency over successive transmissions, that initiated 
the first generation of relatively accessible animal satel-
lite tracking devices. Early deployments using ARGOS to 
track wildlife included basking sharks in June of 1982 [21] 
and wandering albatrosses in 1989 [11].

The ARGOS system employs a repetition period 
between two consecutive payloads, of between 45 and 
200 s for as little as 360 ms (PPT-A3 Argos Specifica-
tion), to estimate the location of a platform transmitter 
terminal. The accuracy of this system is based upon seven 
location qualities ranging from 150 m to tens of kilome-
ters, with a low power consumption using as little as 0.8 J 
per location estimate (assuming two ARTIC R2 transmis-
sions plus amplification to 0.5 W).

Power of arrival (PoA) localization methods rely upon 
the received signal strength at a minimum of two receiv-
ers. Implementation of PoA in LPWANs (low-power 
wide area networks) over long distances is not practi-
cal due to the inverse square law and signal attenuation, 
where the received signal strength quickly becomes too 
weak for the receiver to meaningfully differentiate small 
changes in received signal strength. These techniques are 
most suitable for factory-scale localization.

Time of arrival (ToA) localization methods use the 
time of reception of signals received by a roaming device 
from multiple transmitters of a known location; the most 
ubiquitous implementation of this technology is Global 
Navigation Satellite Systems (GNSS). Efficient imple-
mentations of GNSS networks, such as those using the 
Ublox Zoe-M8B, require around 1.8  J to acquire a loca-
tion from a cold start; this signal then needs to be re-
transmitted adding additional energy overhead. For many 
animal tracking systems using GNSS, it is the single larg-
est power drain on the system. The advantage of GNSS 
based systems is the lack of ground-based infrastructure; 
however, they require expensive space-based infrastruc-
ture. GNSS yield excellent spatial fidelity of around 2.5 
m, with some systems achieving cm accuracy. Modern 
approaches to ToA use LPWAN to unload the on-device 
processing to remote services over communication 

protocols such as LoRaWAN, for example, Kolmostar’s1 
JEDI-200 module.

Time difference of arrival (TDoA) localization meth-
ods require no  transmitter  based location processing 
and only short transmission bursts. Locations using this 
method are estimated by examining the time difference 
of a transmitted signal arriving at multiple fixed time-
synchronized receivers. In this paper, we have chosen 
to examine Taggle’s2 proprietary TDoA localization sys-
tem, each location requires only 0.12 J of energy making 
it suitable for tracking solutions using non-rechargeable 
batteries, allowing for a greater number of location trans-
missions per energy consumed. Taggle’s radio transmit-
ter operates in a frequency range of 912–927 MHz using 
direct sequence spread spectrum modulation at a power 
output of 14 dBm. Its high capacity receivers can accom-
modate at least 14,000 device transmission per hour. 
Along with a message header, single transmissions can 
hold 12–15.5 bytes of user data with a transmission dura-
tion of around 300 ms. The theoretical TDoA localization 
accuracy of the Taggle’s system is approximate:

However, the clock synchronization of the receivers is 
±20 nanoseconds resulting in a potential error of 12 m. 
Menzies et  al. [17] conducted a small-scale trial with 
Taggel’s localization system using twelve Taggle tags on a 
plot, the size of which was approximately 5 ha. They found 
that the positions had a mean precision of ±22 m with an 
SD of 49 m. Ground-based TDoA location systems can 
experience substantial noise due to multipathing where 
the time differences are exaggerated due to signal paths 
that are not line-of-sight, this is the kind of error we 
seek to address in this study. The examined localization 
method uses TDoA among four fixed receivers to esti-
mate the origin of the transmission; the two most basic 
analytical methods are the Taylor series method [18] and 
Chan method [3] that can localize objects with minimal 
error in the absence of multipathing. To address noise in 
TDoA location estimates, machine learning-based meth-
ods are introduced for localization in an arbitrarily com-
plex system. Current approaches to this problem fall into 
two main methodologies.

The first uses fingerprint references and machine learn-
ing models to derive insights about the geometrical struc-
ture of the environment which can provide information 
about TDoA error and improve localization accuracy. 

(1)accuracy =
speed of light

4 × bandwidth
≈ 5m.

1 Kolmostar 48531 Warm Springs Blvd, Suite 407, Fremont, CA 94539 (www.
kolmostar.com).
2 Taggle Systems Pty Ltd. Sydney, N.S.W. 2000, Australia (taggle.com).
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de Sousa and Thomã Electronic [7] applied the Random 
Forest algorithm embedded in a machine learning frame-
work to extract a reference dataset of TDoA fingerprints 
in outdoor scenarios. In the experiment, four TDoA 
sensors were deployed in an area of 2 km2 in the City of 
Ilmenau in Germany, representative of a typical subur-
ban scenario with small buildings and spaced streets. The 
empirical cumulative density function (CDF) used in the 
experiment showed 210 m of error for 65% of location 
estimates, compared to 300 m for the raw TDoA calcula-
tions. Similarly, Alonso-González et al. [1] implemented 
a neural network model to estimate the positions for 
TDoAs using an indoor fingerprint approach to predict 
a transmitters positions in a 3D environment. They tested 
their model in a 4 × 4 × 3 m room; their experimental 
results indicated a substantial improvement in accuracy, 
with a best average error of 390 µm.

The second approach applies denoising neural net-
works to reduce the TDoA error to improve localization 
accuracy. Wu et al. [28] proposed a radial basis function 
(RBF) neural network to improve localization accuracy. 
They tested the model on simulated TDoAs within a 2D 
500× 500 m space with seven receivers, the root mean 
square error (RMSE) of the localization was 17 m, while 
the Chan algorithm leads to an ≈ 30 m RMSE. Zhang 
et al. [30] presented a novel localization algorithm based 
upon a neural network ensemble to estimate the posi-
tions of objects in indoor multipathing environments. 
The ensemble method was tested on the simulated TDoA 
in a 2D 60× 60 cm space. The best RMSE of localization 
was < 1 cm and the ensemble method also showed better 
generalization and stability than a single neural network.

These approaches demonstrate the utility of machine 
learning models for localization in reducing the initial 
TDoA error or for correcting location estimates from 
noisy TDoAs. In this work, we present a novel denois-
ing 1D convolutional neural network. The denoising 
encoder/decoder we propose has many similarities with 
a denoising autoencoder; however, the autoencoder lacks 
the skip connections we employ. Denoising autoencoders 
are an extension of simple autoencoders and were origi-
nally invented to reduce the risk of overfitting  [2, 27]. 
Denoising autoencoders can be applied to remove the 
effect of stochastic noise to inputs, for example, to clean 
the noise from corrupted images. Convolutional layers 
emphasize local features of structured data, such as those 
evident in images or sequence data. The information 
from these local features help the model to reduce noise 
from TDoA sequences and their associated movement 
sequences. Diakogiannis [8] proposed a novel deep learn-
ing framework for semantic segmentation of remotely 
sensed data; this framework consisted of stacked CNN 
layers in a U-Net-like backbone [24]. We propose a 

denoising encoder/decoder algorithm based on this 
framework with 1D CNN layers. The algorithm (ResU-
net-1d) is a deep learning approach for TDoA localiza-
tion error correction, using noisy TDoA tracks to correct 
for multipathing. The performance of this algorithm was 
tested on simulated animal track TDoA sequences with 
added noise derived from real-word data. The results 
show that this algorithm can recover animal tracks from 
noisy TDoAs. We then compared our approach with a 
Kalman filter to see how our approach compared to this 
widely employed strategy for reducing statistical noise in 
time series data.

The remainder of the article is organized as follows. In 
Sect. 2, we discuss the problem of TDoA localization in 
terrestrial systems. Section 3 describes the model archi-
tecture and the methodology of the experiment. Sec-
tion 4 describes the animal movement simulation and the 
method for generating the TDoA data. The final Sect. 5 
presents the performance of the developed algorithm 
in comparison to the non-corrected TDoA location 
estimates.

Problem overview and formulation
Classical TDoA localization methods assume that radio 
signals travel without obstruction in line-of-sight with 
localization solutions based on solving the following 
hyperbolic equations:

where ToAi is the time of arrival to the ith receiver, 
defined as

Here, Xi , and Yi are the coordinates of the ith receiver sta-
tion, while x and y are the coordinates of the transmission 
origin track, and c is the speed of light in air.

The height of receivers and transmitters in TDoA net-
works can vary adding systematic error; however, in 
most practical cases, the introduced error is negligible. 
For instance, the error introduced by a 100 m elevation 
across 1 km is < 5 m. Of most concern is the occlusion 
of line-of-sight between transmitters and receivers due 
to vegetation, topography, or man-made objects. Such 
obstructions can lead to increased path length, and hence 
the time of arrival, between a transmitter and receiver. 
This multipathing phenomenon can add significant error 
to TDoA localization estimates.

In multipathing scenarios, signals always travel along 
a longer path than line-of-sight, therefore the error of 
ToAs is always positive, but the error for TDoAs, accord-
ing to the Eq. (2) can be either positive or negative. Since 

(2)TDoAij = ToAi − ToAj,

(3)ToAi =
1

c

√

(x − Xi)
2 + (y − Yi)

2.
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the real path of each signal traveled corresponds to a 
unique multipathing scenario, it is not possible to predict 
or model the error of TDoA from a single transmission.

To get an estimate of a real-world TDoA error dis-
tribution, we placed a single static transmitter, tag ID 
is 130114, in Warina Park, Townsville Australia (Lat. 
−19.279, Long. 146.771) and made 2215 localization 
transmissions at two-minute intervals (approximately 3 
days). The TDoA was examined by looking at two receiv-
ers in Townsville’s Taggle network, towers taggle-058 and 
taggle-067. The resulting error distribution in meters 
is shown in Fig.  1, using a bin size of 8 m. The noise is 
normally distributed and the problem can be framed as 
reducing Gaussian noise from TDoA measurements.

Model framework
This section gives an overview of the architecture of the 
model ResUnet-1d (Sect. 3.1) which reduces the locali-
zation errors of animal tracks. The ResUnet-1d model 
combined two tasks, converting the TDoAs to posi-
tions and localization denoising. Section  3.2 introduces 
the process of model training and the use of the trained 
model.

Architecture
In this study, we implement a modified 1D version of the 
ResUnet-a model [8] that is designed for semantic seg-
mentation of mono-temporal very high-resolution aerial 
images. ResUnet-a uses a UNet encoder/decoder back-
bone and residual building blocks with atrous convolu-
tions for feature extraction. In the middle and at the end 
of the network, a pyramid scene parsing pooling layer is 

implemented. The network implements a conditioned 
multitasking approach, estimating the semantic classes, 
their boundaries, and their distance transforms.

This model was chosen as it has a few advantages for 
the problem of TDoA positioning and localization error 
reduction. First, the U-Net backbone architecture is 
recognized in the field of computer vision for achieving 
state-of-art image denoising [13, 14]. Second, the residual 
connections [9] allow for the efficient gradient propaga-
tion in deep architectures, thus guaranteeing fast con-
vergence and improved performance. Heinrich et al. [10] 
integrated ResNet into the fully convolutional neural 
network (FCN) with U-Net architectures for Low-Dose 
Computerized Tomography (CT) image denoising, show-
ing that U-Net combined with ResNet yields the most 
promising result with an enhanced peak signal–noise 
ratio. Therefore, we have migrated this successful frame-
work from the domain of image denoising and applied it 
to our TDoA animal tracking problem. The architecture 
of the framework is shown in Fig. 2.

In the proposed model, ResUnet-1d, we introduce 
several changes to the original ResUnet-a that make 
it suitable for our application. First, the TDoAs and the 
positions are multi-channel one-dimension time-series 
data, the 2D convolution layers in the model are replaced 

Fig. 1 Histogram (bin 8 m) of sampled error distribution of TDoAs 
measured on a static reference tag (tag ID: 130114) deployed in 
Warina Park, Townsville, Australia. A total of 2215 transmissions were 
used to estimate the error distribution using two Taggle receivers 
(tower ID: taggle‑067 and taggle‑058). The fitted distribution 
demonstrates the Gaussian nature of the error with an X̄  ∼ 0 and 
σ ∼ 100

Fig. 2 ResUnet-1d architecture.The left (downward) branch is 
the encoder. The right (upward) branch is the decoder. Conv1D is the 
standard 1D CNN layer, and Conv1DN is the standard 1D CNN layer 
with batch normalization.The B in data size represents the batch size, 
and the Ntime represents the sequence length of the input data
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by 1D convolutions. Second, compared with seman-
tic segmentation tasks, the time series denoising tasks 
should be simpler in both the input data format and the 
difficulty of the tasks. Therefore, in ResUnet-1d, the 
encoder part only consists of three ResBlock-a build-
ing blocks followed by a 1D PSPPooling layer. Each 
feature extraction unit is a standard residual unit (we did 
not use atrous convolutions). This shallower model can 
potentially prevent overfitting issues while reducing the 
computational burden. Lastly, as PSPPooling does not 
perform well on regression problems [8], the last PSP-
Pooling layer is replaced by an attention block which is 
embedded in the HEAD block for increased performance, 
details of this block are illustrated in Fig. 3.

Methodology
As the received TDoAs of each transmitter denote time-
series data, we needed to segment the continuous time-
series data into fixed-length sequences. The proposed 
model expects 256 records in one piece of track data. But 
it is a free parameter determined by the specific task, the 
only requirement is that the length of the training time 

series tracks should match the length of the tracks on 
which the model will be applied.

The input data are a sequence of noised TDoAs, with 
the shape 256× Nt , where Nt is 3, which is the number of 
the TDoAs at each transmission. The simulated ground 
truth animal tracks, that were used to generate the noisy 
TDoAs are the ground truth values that the algorithm 
is trying to recover. The shape of the output track is 
256× 2 , as each position only has two coordinates, x, and 
y. The output of the model can predict denoised tracks 
using noised TDoAs as an input, hence reducing TDoA 
multipathing error.

In principle, the proposed model could be trained by 
real-world animal tracks and TDoAs collected from the 
paddock. However, in practise, training of the deep learn-
ing model requires thousands of data samples, which 
may not be feasible for most real-world applications of 
this problem. Furthermore, it is unlikely that an animal 
will be fitted with both a GNSS and TDoA tracking sys-
tem outside of a research setting. We, therefore, propose 
the application of this model be proceeded by two initial 
steps, deployment of static tags to estimate the TDoA 
error distribution followed by the simulation of TDoAs 
tracks. We will introduce the simulation methods in the 
next section. The simulated data can be used to train the 
model and the trained model will be able to reduce the 
localization error.

Kalman filter
We compared our results against those obtained with a 
Kalman filter to observe the efficacy of our approach to 
this widely employed method for noise reduction in time 
series data. A Kalman filter is a recursive algorithm to 
estimate the state of a dynamic system having certain 
types of random behavior and demonstrates the capabil-
ity of noise reduction [16]. We applied this approach to 
reduce localization noise.

The Kalman filter describes the system by the state vec-
tor xTt = (x, y, vx, vy) and updates the state vector and 
error covariance matrix Pt in each iteration. To update 
the state vector and error covariance matrix, we need the 
state transmission matrix F, measurement noise covari-
ance matrix Q, system noise covariance matrix R, and the 
measurement vector zt . In this case, the state transmis-
sion matrix is:

The measurement noise covariance matrix Q and system 
noise covariance matrix R are estimated from the dataset. 
The measurement vector zt is the localization position 

(4)F =







1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1






.

Fig. 3 The architecture of the HEAD block. The two inputs of this 
block are the outputs of the first Conv1DN in the encoder branch 
named First and the output of the final ResUnit in the decoder branch 
named Final.The B and Ntime have same meaning as in Fig. 2
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estimated from the raw TDoAs at each time t. The update 
of the state vector and the error covariance matrix is 
given by:

where I is the identity matrix, x̄t is the priori estimate of 
the state vector, and Kt is the Kalman filter gain. In each 
time step, the Kalman filter estimates the state vector 
by combining the prior estimate of the state vector and 
the measurement vector with the Kalman filter gain. In 
this work, we implement the Kalman filter using an open 
source Kalman filter module, pykalman, on Github.

Data simulation and preprocessing
Within the field of animal movement behavior, the mod-
eling of movement data is implemented in many ways. 
Quaglietta and Porto [22] introduced an algorithm, Sim-
Riv, to simulate individual-based, spatially explicit move-
ments in river networks and heterogeneous landscapes. 
In this study, we simulate a cows’ movement using this 
approach on a totally homogeneous landscape.

Animal track modeling
Animal movements are considered to be Brownian 
motion and multistate. The main states of the movement 
include random walking, correlated random walking, and 
rest. The random walk state is a random movement state, 
in which the direction of the steps is completely inde-
pendent. The correlated random walk means the direc-
tion taken in one step by an individual animal should be 
correlated with the direction of the previous step [23, 26]. 
The correlation, which is the turning angle concentra-
tion parameter of the wrapped normal distribution, has 
a value between [0, 1], where 0 means there is no corre-
lation between two steps (yielding a random walk state), 
and 1 means the direction does not change. In this study, 
we use 0.98 (as chosen by Quaglietta and Porto [22]) as 
the value of correlation. The resting state corresponds 
to a state where the individual animal does not change 
position.

Following Quaglietta and Porto [22], we assume the 
cows are Lévy-like walkers who alternate between ran-
dom walks and correlated random walks. This multi-state 

(5)x̄t = Fxt−1,

(6)P̄t = FPt−1F
T
+ Q,

(7)Kt = P̄tH
T (HP̄tH

T
+ R)−1,

(8)xt = x̄t + Kt(zt −Hx̄t),

(9)Pt = (I − KtH)P̄t ,

movement simulation required specifying the prob-
abilities of transition between the random walk state and 
correlated random walk state [19]. We used a transition 
matrix to define the probabilities of transition between 
states. The transition matrix is a square matrix where all 
values are probabilities, and the element at row i column 
j defines the probability of the individual changing from 
state i to state j. The transition matrix in this study is as 
same as the example in Quaglietta and Porto [22], which 
is

The step length, in meters, for both states are set to a ran-
dom number from the uniform distribution U(0, 1).

TDoA simulation
In the simulation, the coordinates of the receivers are: 
(−2000, 2000) m, (−2000, 2000) m, (2000,−2000) m, and 
(2000, 2000) m, an area of 16,000 ha. To mimic real-world 
animal movements at different time scales the simula-
tions recorded the positions of the track at different step 
intervals, Ns . We converted the recorded positions into 
ToA using Eq. (3). The TDoAs were obtained by the sub-
stitution of two ToAs using Eq. (2). The input TDoAs in 
our model are TDoA12 , TDoA13,and TDoA14 . For com-
putational simplicity, we multiplied the derived times by 
the speed of light, c for all the input TDoAs to get dis-
tances. We added Gaussian noise N (0, σ) , based upon 
the static tag observation, into the simulated TDoAs to 
generate noised TDoAs, where σ is the standard devia-
tion of the TDoA error distribution. In this work, we 
evaluate our model’s ability to reduce noise for TDoAs 
exhibiting error standard deviations of either 50 m or 100 
m.

Training data simulation and preprocessing
For the training simulation dataset, we first generated 
multiple animal movement tracks within a virtual pad-
dock. Each track started from a random position within 
the paddock and picked a direction for the first step with 
equal probabilities. The subsequent steps were gener-
ated with the method discussed in Sect. 4. As discussed 
in Sect.  4.1, we assumed the device recorded the posi-
tion of the animal every Ns steps. The number of steps 
in each simulated track sequence was Ns × 256 . We then 
down-sample the track by extracting the first position 
in every Ns steps. The down-sampling mimics receivers 
only recording the animal’s positions at set time intervals, 
the length of all tracks after down-sampling is 256. We 
saved these down-sampled tracks as the target outputs 
of the model. When the tracks were generated, we used 
the method detailed in Sect.  4.1 to calculate the TDoA 

(10)
(

0.995 0.005
0.01 0.99

)

.
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sequence of each track and then add random Gaussian 
noise.

The resultant noised TDoAs (model input) and the 
corresponding ground truth positions (model output) 
pairs were split into a training dataset and a testing data-
set in the fraction of 8  : 2. Meeting the requirements of 
the ResUnet-1d, the values of the model inputs and 
the model outputs should be in the range of [0,  1], we 
re-scaled the input and output data in both training and 
testing datasets through min–max normalization. As all 
data used in this work are simulated, we do not need to 
tackle the issue of missing. However, the occurrence of 
missing data in time-series data is very common, we will 
discuss this issue in Sect. 5.3.

Evaluation
In this section, the predictive accuracy of the ResUnet-
1d is evaluated by using simulated animal movement 
data described in the previous section. The localization 
results from our model are compared with the results of 
the analytical method implemented in Menzies et al. [17].

Design of experiment
In this work, we implemented the ResUnet-1d model 
to reduce localization error, the main source of this error 
in real-world TDoA deployments is multipathing. We 
evaluated our model on the simulated Lévy-like tracks 
with different recording steps Ns and two different TDoA 
error standard deviations σ . We aimed to investigate if 
ResUnet-1d could reduce the localization error signifi-
cantly and how the ResUnet-1d model performance 
varied with step interval Ns and the original TDoA error’s 
standard deviation σ.

As observed from the static tag in Townsville, the 
error distribution of TDoAs is Gaussian, and the stand-
ard deviation of the error in the range of ∼ 100 m. We 
use this value to simulate a urban-like environment. 
However, we suspect that the urban environment has 
increased multipathing issues due to large metallic mov-
ing objects, such as vehicles, and other effects of the built 
environment. In more remote agricultural areas, these 
aforementioned obstructions are greatly reduced, thus 
we can hypothesize that the standard deviation of the 
TDoA error in these locations is likely to be lower. To 
mimic this expectation, we chose to halve the standard 
deviation of the error to 50 m to emulate a more rural 
setting. The choice of this value for the SD is corrobo-
rated by Menzies et al. [17].

In our simulation, the step size was selected from a uni-
form distribution U(0,  1) m to mimic continuous move-
ment. As discussed in Sect. 4.2, we down sampled the track 
positions by recording only one position in every Ns posi-
tions, where Ns ∈ [10, 20, 40, 60, 80, 100, 200, 300, 500] 

which is equivalent to a time interval ranging from 0.6− 30 
min when considering the average speed of a cow [20, 25]. 
The values of this time interval would be much higher for 
grazing individuals.

The optimized hyperparameters of ResUnet-1d are 
summarized in Table 1. For all models, we used the Adam 
[12] optimizer, with a learning rate of 10−4 . We chose the 
L1Loss loss function to obtain the best training perfor-
mance for ResUnet-1d. Our model was built and trained 
using the MXNet deep learning library [4], under the 
GLUON API. Each of the models was trained on 8000 sim-
ulated tracks with a batch size of 256 on a single NVIDIA 
Tesla P100 GPU using the CSIRO’s HPC facilities. We 
used 2000 simulated tracks to test the performance of our 
model.

Performance of ResUnet‑1d
Figures 4 and 5 illustrate simulated tracks, the orange lines 
are the ground truth movement track generated from 
the animal movement simulations and the faded blue 
points are the measured positions calculated with noised 
TDoAs. The green lines represent the recovered tracks by 
the ResUnet-1d model, they reproduce the shape of the 
ground truth tracks and recovered most of their features. 
The gray lines are the tracks recovered by the Kalman fil-
ter and also exhibit noise reduction. However, the tracks 
recovered by the Kalman filter have larger errors than those 
recovered by our ResUnet-1d model.

To evaluate the performance of the model quantitatively, 
we measure the root mean square error (RMSE) of noised 
tracks and recovered tracks to the ground truth tracks in 
the following way

where the (x, y) represents the position of noised tracks 
or recovered tracks, and (x̂, ŷ) represents the position of 
ground truth tracks. The probability density function 
(PDF) of the errors is illustrated in Figs. 6 and  7. In both 
figures, the distribution of the error of the ResUnet-1d 

(11)RMSE =

√

√

√

√

1

n

n
∑

i=1

(xi −Oxi)2 + (yi −Oyi)2,

Table 1 Hyperparameters of the ResUnet-1d 

Hyperparameters Value

Depth 3

Number of filters 32

Batch size 256

Learning rate 10
−4

Optimizer Adam

Loss Function L1Loss
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Fig. 4 Examples of simulated ground truth tracks (orange), ResUnet-1d corrected tracks (green) and Kalman filter corrected tracks (gray). Blue 
points are the positions from noised TDoAs. The black vertical and horizontal lines indicate 100 m distance. The standard deviation of the raw TDoA 
noise was σ = 50 m. Inset black numbers indicate step down‑sampling increment

Fig. 5 Examples of simulated ground truth tracks (orange), ResUnet-1d corrected tracks (green) and Kalman filter corrected tracks (gray). Blue 
points are the positions from noised TDoAs. The black vertical and horizontal lines indicate 100 m distance. The standard deviation of the raw TDoA 
noise was σ = 100 m. Inset black numbers indicate step down‑sampling increment
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recovered tracks is significantly narrowed and of a lower 
value compared with the distribution of the original error 
of the noised tracks. Comparison of the distribution 
of the error of the ResUnet-1d recovered tracks and 
Kalman filter recovered tracks confirm what Figs. 4 and 
5 illustrate, the distribution of the error from the tracks 
recovered by ResUnet-1d are clearly narrower and 
lower than those from Kalman filter. Therefore, we dem-
onstrate that our ResUnet-1d model can effectively 
reduce localization error introduced by random Gaussian 
errors in TDoA position estimates, and can outperform a 
Kalman filter.

Figure 8 compares the RMSE of uncorrected and cor-
rected tracks from the two simulations with different 
noise levels. The RMSE of the two recovered tracks by 
ResUnet-1d are significantly lower than the RMSE 
of the two noised tracks and the tracks recovered by 
Kalman filter. When the original localization error was 
lower, orange lines, the efficacy of the recovered tracks 
dropped slightly. On average, for simulated tracks hav-
ing added noise with a standard deviation of 50 m, the 
ResUnet-1d approach was able to reduce localization 
error by between 66.3% and 73.6%. The Kalman filter 
only achieved a reduction of between 8.0% and 22.5%. 
For a scenario with larger added noise having a standard 

deviation of 100 m the ResUnet-1d approach was able 
to reduce average localization error by between 76.2% 
and 81.9%. The Kalman filter only achieved a reduction of 
between 31.0% and 39.1%.

Results indicate that ResUnet-1d is able to reduce 
average localization errors to between 16 and 34 m 
across all simulated experimental treatments while the 
corresponding uncorrected average TDoA location 
error ranged from 55 to 188 m, and in the case of the 
Kalman filter between 48 and 115 m. Our ResUnet-1d 
approach was robust to the down sampling (step) inter-
val; however, the Kalman filter error correction tended to 
improve at greater step intervals but never approached 
the levels observed by ResUnet-1d. On average across 
the two noise treatments ResUnet-1d exhibited a 54% 
(noise σ = 50 m) and 44% (noise σ = 100 m) difference in 
localization error correction.

Discussion
Conventional analytic methods for calculating locations 
based upon TDoAs work well in the absence of multip-
athing; in real-world settings, multipathing degrades the 
performance of these systems. Previous machine learn-
ing methods have shown a reduction in localization noise 
but have only considered a single static position.

Fig. 6 Probability density function for localization errors after noise with a standard deviation of 50 m had been applied to simulated tracks. 
Results are displayed for uncorrected TDOAs, ResUnet-1d recovered tracks and Kalman filter recovered tracks. Inset black numbers indicate step 
down‑sampling increment
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Due to the nature of track localization, the positions 
of neighboring points have information which can help 
contribute to a reduction in localization error. There-
fore, a model which can combine information about 
neighboring points to make an enhanced prediction 
should provide a better solution to this problem. A 
Kalman filter is a conventional method to reduce noise 
in just such a scenario. The method proposed in this 
work implements a CNN layer to consider the connec-
tion between neighboring positions for animal move-
ment tracks. The combination of the CNN layer and 
U-Net like encoder/decoder architecture enhances 
the ability of the model to reduce noise in the data. 
The complexity of the model we proposed here simul-
taneously considers and extracts hidden patterns from 
the random noise over a long portion of the track. A 
Kalman filter only looks at the position before the given 
position and assumes a linear function to make the 
prediction. By testing this algorithm on a correlated 
random walk simulation, we have made the assump-
tion of a homogeneous paddock environment using 
SimRiv. It is recognized that SimRiv does not take into 
account the impacts of a heterogeneous landscape, 
where the willingness of an animal to cross a specific 
environment is not taken into account. We anticipate a 

heterogeneous environment, such as creek lines, would 
elicit less random animal movements resulting in a 
higher correlation between neighboring positions. This 
kind of correlation should translate to increased per-
formance when compared to animal tracks simulated 
under the assumption of a homogeneous environment.

The use of this method requires a sequence of the 
TDoAs without missing data. Missing data are likely 
to be common in TDoA localization networks. In real 
deployments, the signal transmission can not only be 
reflected by objects but also blocked by them. Moreover, 
network communication outages along with transmitter 
maintenance or failure will also lead to data gaps.

It would be possible to implement a simple interpola-
tion prepossessing step to the proposed model to recover 
missing data. Two promising methods for enhance the 
interpolation are the implementation of a momentum 
term or a Taylor approximation. Zhang et  al. [29] pro-
posed a new sequence-to-sequence imputation model for 
recovering missing data in wireless sensor networks. This 
method could also be employed in the data prepossessing 
pipeline to address missing data.

We acknowledge that the simulated data in this paper 
represent an oversimplification of this problem; we 
expect real-world deployments to pose challenges such as 

Fig. 7 Probability density function for localization errors after noise with a standard deviation of 100 m had been applied to simulated tracks. 
Results are displayed for uncorrected TDOAs, ResUnet-1d recovered tracks and Kalman filter recovered tracks. Inset black numbers indicate step 
down‑sampling increment
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shifting error means and standard deviations for TDoA 
data spatially. This paper does, however, demonstrate the 
potential utility for this approach. We intend to take this 
simulated model and apply it to a working cattle station 
to see if the demonstrated gains hold true for a real-world 
scenario. This will include the deployment of multiple 
static nodes that will inform the TDoA stochasticity both 
spatially and temporally.

Conclusion
In this paper, we developed and investigated a 1D 
CNN-based U-Net like encoder/decoder model for 
denoising TDoA position estimates for animal track-
ing using simulated animal movement data (ResU-
net-1d). We have demonstrated that our model can 
successfully recover simulated animal movement tracks 
from noised TDoA sequences, and reduce localization 
error by between 66.3% and 81.9%. As the results for 
ResUnet-1d tracks with different step intervals do 
not show a clear trend, it would be possible the algo-
rithm to be implemented for animal tracks constructed 
from lower frequency transmissions, at down-sampling 
intervals greater than 500 m. Our model outperforms 
a Kalman filter for this TDoA noise reduction problem 

and is more robust to changes in the down-sampling 
interval. These findings need to be validated in a work-
ing cattle station in conjunction with an assessment of 
missing data prepossessing.
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