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Abstract 

Background: Fine‑scale data on animal position are increasingly enabling us to understand the details of animal 
movement ecology and dead‑reckoning, a technique integrating motion sensor‑derived information on heading and 
speed, can be used to reconstruct fine‑scale movement paths at sub‑second resolution, irrespective of the environ‑
ment. On its own however, the dead‑reckoning process is prone to cumulative errors, so that position estimates 
quickly become uncoupled from true location. Periodic ground‑truthing with aligned location data (e.g., from global 
positioning technology) can correct for this drift between Verified Positions (VPs). We present step‑by‑step instruc‑
tions for implementing Verified Position Correction (VPC) dead‑reckoning in R using the tilt‑compensated compass 
method, accompanied by the mathematical protocols underlying the code and improvements and extensions of this 
technique to reduce the trade‑off between VPC rate and dead‑reckoning accuracy. These protocols are all built into 
a user‑friendly, fully annotated VPC dead‑reckoning R function; Gundog.Tracks, with multi‑functionality to reconstruct 
animal movement paths across terrestrial, aquatic, and aerial systems, provided within the Additional file 4 as well as 
online (GitHub).

Results: The Gundog.Tracks function is demonstrated on three contrasting model species (the African lion Panthera 
leo, the Magellanic penguin Spheniscus magellanicus, and the Imperial cormorant Leucocarbo atriceps) moving on 
land, in water and in air. We show the effect of uncorrected errors in speed estimations, heading inaccuracies and 
infrequent VPC rate and demonstrate how these issues can be addressed.

Conclusions: The function provided will allow anyone familiar with R to dead‑reckon animal tracks readily and accu‑
rately, as the key complex issues are dealt with by Gundog.Tracks. This will help the community to consider and imple‑
ment a valuable, but often overlooked method of reconstructing high‑resolution animal movement paths across 
diverse species and systems without requiring a bespoke application.

Keywords: Animal behaviour, Animal movement, Global Positioning System, R (programming language), Track 
integration, Tri‑axial accelerometers, Tri‑axial magnetometers
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Background
Reconstructing animal movement paths is an important 
tool in ecology, providing insights into animal space-use, 
behaviour and habitat selection [1–3]. However, accurate 
estimation of paths at fine temporal scales has proved a 
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persistent challenge [4, 5]. Dead-reckoning is a method 
used to reconstruct animal movement paths, based on 
sequentially integrating the vector of travel from a pre-
determined position using estimates of heading (also 
termed ‘bearing’ or ‘yaw’) and speed (and displacement 
about the vertical axis for 3-D movements), over an 
elapsed time interval [6–9]. In its most advanced form, it 
can provide positional data with sub-second resolution, 
irrespective of the environment [e.g., 10, 11, 12] and it 
therefore has huge potential for providing data that can 
elucidate many fundamental behavioural and ecological 
issues related to space-use.

The concept of dead-reckoning (also termed ‘track 
integration’) originated to aid nautical navigation [6, 13], 
though its utility to reconstruct uninterrupted fine-scale 
(in time and space) animal movement paths by inte-
grating different sensors in animal-attached tags was 
suggested over three decades ago [14, 15]. Today, this 
typically involves the simultaneous deployment of tri-
axial accelerometers and magnetometers [e.g., 9, 10, 16, 
17–20], utilising the tilt-compensated compass method 
[21–24] (see “Glossary” for a definition of dead-reckon-
ing-related terminology used throughout).

The utility of dead-reckoning depends on the accu-
racy of speed and heading estimates (see Table  1) and, 
due to the nature of vector integration, dead-reckoned 
tracks accumulate errors (commonly termed ‘drift’) over 
time [15, 25, 26]. As a result, periodic ground-truthing 
by a secondary source is important for maintaining the 
accuracy of animal paths with all its underlying scales 
and tortuosity of movement [9, 10, 27]. For this reason, 
dead-reckoning data are normally enhanced by combin-
ing it with other methods for providing Verified Positions 
(VPs). These are primarily; direct observation [e.g., 28], 
light intensity-based geolocation [e.g., 29], VHF—[e.g., 
30], acoustic—[e.g., 31] and GPS telemetry [e.g., 26]. 
Other, less utilised, systems that may also have merit 
at sites frequented by the tagged animals, include radio 
frequency identification (RFID) stations [cf. 32], camera 
traps [cf. 33] and video footage, such as closed-circuit tel-
evision (CCTV) surveillance [e.g., 34]. Although all these 
systems are subject to a number of issues that can make 
their positional fixes temporally widely spaced [e.g., 4, 35, 
36], inaccurate [e.g., 37, 38, 39] or impossible [e.g., 40, 
41, 42], they can be critical in providing ground-truthed 
positions, even infrequently, with which to reset accumu-
lated drift [9, 26].

Of the above VP options, GPS-corrected dead-reck-
oning is the most widely used and there is a marked bias 
towards marine studies [e.g., 10–12, 15–17, 19, 27, 43, 
44–56]. This is likely for logistical reasons, with many 
aquatic animals being larger (and thus can carry larger/
more devices) than their terrestrial counterparts [57], 

whilst the utility of transmission telemetry is restricted 
to periodic resurfacing events [58]. Moreover, speed can 
be more easily measured or approximated in water, with 
previous studies obtaining estimates via acoustic flow 
noise [e.g., 59], passive sonar [e.g., 60], pitch and change 
in depth [e.g., 11] and speed sensors [cf. 16, 61, 62]. The 
efficacy of such techniques diminishes within the aerial 
environment, principally, due to the marked difference 
between water and air density [cf. 63] and the current 
speed and volatility of wind [cf. 64, 65]. Indeed, this may 
explain why, in part (to our knowledge), only one study 
to date has dead-reckoned a volant species [66]. More 
recently, dynamic body acceleration (DBA, see Wilson 
et al. [67], for recent review) has been validated as a proxy 
of speed for terrestrial animals [68, 69] although there are 
still very few studies that use the dead-reckoning method 
in terrestrial animals [e.g., 9, 10, 26, 34, 70, 71].

We suggest that another reason that Verified Position 
Correction (VPC) dead-reckoning has been little used 
relates to the apparent difficulty and poor accessibility of 
the analytical processes involved. With this in mind, the 
primary aim of this paper is to provide potential users 
with a clear, concise roadmap for implementing dead-
reckoning protocols. Specifically, we revisit the dead-
reckoning methodology, from calibrating magnetometry 
data and deriving heading (tilt-compensated compass 
method), to VPC dead-reckoning within both terrestrial 
and fluid media. We provide simplistic conceptual expla-
nations and mathematical protocols and describe the 
pitfalls within the procedure that can increase error. We 
also translate the relevant equations into complementary 
R code [cf. 93, available at 94] throughout the text, with 
fully annotated scripts deposited in Additional files 2, 3, 
4, 5 and GitHub [available at 95].

In addition to the above, we outline recent advances 
to the VPC dead-reckoning technique. For use in ter-
restrial environments, this includes implementing step 
counts as a distance measure, by-passing dynamic body 
acceleration (DBA) as a proxy of speed, and assessing the 
value of ‘reverse dead-reckoning’ (useful when VPs are 
concentrated to the latter end of an animal’s trajectory). 
For marine and aerial environments, we demonstrate 
the value of integrating tidal-/air current data with dead-
reckoned vectors (hereafter termed ‘current integration’) 
to reduce errors attributed to drift [cf. 46, 92]. Across all 
three media of travel (land, water and air), we show the 
value of incorporating different speed coefficients accord-
ing to behaviour types. In addition, we provide examples 
of the various methods by which VP data can be under-
sampled (relevant for high-res GPS datasets) prior to 
correcting dead-reckoned tracks and discuss the scales 
at which users should consider VP correction (which 
depend on the details of species-specific movement and 
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length of data acquisition). We specifically demonstrate 
the above using our R-functions (Gundog.Tracks being 
the primary function for dead-reckoning), providing 
examples of its utility across various scenarios. Lastly, 
we highlight the relevance of heading and distance cor-
rection factors (derived from the VPC procedure), which 
can also be used to interrogate the animal–environ-
ment interaction and biases stemming from animal tag 
performance.

To illustrate our approach, we use three model species 
(the African lion Panthera leo, the Magellanic penguin 
Spheniscus magellanicus and the Imperial cormorant 
Leucocarbo atriceps) that cover almost two orders of size 
magnitude in body mass and that operate in markedly dif-
ferent environments and at different scales of movement. 
To make this review more broadly applicable to research-
ers of varying dead-reckoning and R knowledge, we have 
departed from a traditional article format and instead, 
split this body of work into two distinct sections: firstly, 
we provide an overview of the critical Gundog.Tracks 
function and provide a brief review of the conceptual 
workflow (“Implementation of Gundog.Tracks” section). 
With respect to this, we discuss the relevant strengths 
and limitations of the current dead-reckoning framework 
and the key considerations involved. Secondly, we detail 
each ‘potential’ stage of the VPC dead-reckoning proce-
dure with exemplar mathematical equations and R syntax 
(“VPC dead-reckoning procedure in R” section).

Implementation of Gundog.Tracks
We expand on key concepts in Additional file  1 and 
provide complimentary R scripts (outlined below) in 
Additional files 2, 3, 4 and 5. We also supply an exam-
ple data set of a Magellanic penguin walking out to sea 
in Additional file  6, which can be used to trial each of 
the provided R scripts and perform the full dead-reck-
oning process. Mathematical equations are referred to 
as ‘Eqs. 1–33’ and R syntax as ‘Rx’, where ‘x’ is the refer-
ence number. To simplify concepts, we use base R syntax 
(wherever possible) and typically use vectors to dem-
onstrate points made, though ‘df$’ directly before the 
variable name indexes data retained within data frame 
columns (assuming data frame is called ‘df ’). We note, 
however, that more efficient code implementations are 
possible (e.g., data.table [96] and lapply()) than pre-
sented here, especially for large data, but here wanted 
to make the code as readable as possible in this manu-
script, especially to persons not familiar with complex 
coding. More efficient code will be implemented through 
updated GitHub versions of the functions. See Additional 
file  1: Text S1 for our model species’ device setup and 
capture protocol and the glossary for a definition of dead-
reckoning related terminology.

User functionality
Gundog.Tracks is an all-encompassing dead-reckoning 
function that can be used to dead-reckon animal paths 
travelling terrestrially or through fluid media. Table  2 
details all the function’s input requirements/options.

Reverse dead‑reckoning
Dead-reckoning backwards is useful when the start 
position is unknown, but the finishing coordinates are 
known. For example, central-place foraging, diving ani-
mals returning to land from the sea may not acquire a 
satellite fix for an appreciable period of time following 
submersion in water which can make determining the 
start position difficult. So, when VPs are skewed to the 
latter part of the track, it may be beneficial to start the 
iterative dead-reckoning process from that end. This 
involves reversing the order of data to be dead-reckoned 
and changing heading values by 180 degrees prior to 
dead-reckoning.

Integrating current vectors
Wind or ocean currents can change the relationship 
between an animal’s (longitudinal axis) bearing and 
speed of travel from their true vector of travel [46, 92]. 
This drift can be incorporated within movement paths by 
advancing each iterated dead-reckoned vector according 
to the direction and speed of the current at that point in 
space and time (cf. Fig. 1).

DBA–speed derivation
Given the approximate linear relationship between 
DBA [sensu 67] and terrestrial animal speed 
[speed = (DBA·m) + c], DBA estimates can be multi-
plied by a gradient, m (the multiplicative coefficient) 
and summed with an intercept, c (the constant) to 
derive speed [10, 26]. These values are typically substi-
tuted with results from DBA–speed linear regression 
estimates, such as from treadmill tests or using GPS-
derived speed [26, 69, 97, 98]. The m-coefficient should 
be selected such that (uncorrected) dead-reckoned 
tracks accord with the apparent straight-line distance 
between VPs. Importantly, the DBA–speed relation-
ship may be a function of terrain-type (e.g., sand vs. 
concrete), animal state (e.g., weight variation) and 
mode of movement (e.g., running vs. climbing) [cf. 68]. 
For instance, a condor gliding within a thermal would 
have high speeds, despite having negligible DBA, while 
an Ibex traversing across different substrate types and 
gradients would impart varying magnitudes of accel-
eration that may scale non-linearly with a change in 
stride gait. It may be of value, therefore, to iteratively 
change the supplied m (and possibly c) values between 
VPs according to behaviour and environment. The user 
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Table 2 Gundog.Tracks input fields and description of their role

Func�on input Descrip�on Ref

TS Timestamp - POSIXct object. No missing data (NA’s) permi�ed -

h Heading (0
o
 to 360

o
) - No missing data (NA’s) permi�ed -

v DBA (g or m/s
2
) or speed (m/s) - No missing data (NA’s) permi�ed -

elv Eleva�on / depth data (m) - No missing data (NA’s) permi�ed 0

p
Pitch (o) – Only supply if user wants radial distance modulated according to pitch (cf. 

NULL

cs
Current speed (m/s) - Supplied as a single value or vector/column of changeable values. NA’s are replaced with 
the most recent non-NA prior to it (observa�ons carried forward)

NULL

ch Current heading (0
o
 to 360

o
) -

 
Supplied as a single value or vector/column of changeable values. NA’s are replaced 

with the most recent non-NA prior to it (observa�ons carried forward)
NULL

m
Mul�plica�ve coefficient (gradient) - If speed (m/s) supplied for v, then m must be 1. 
Supplied as a single value or vector/column of changeable values

1

c
Constant (y-intercept) – If speed supplied for v, then c must be 0. 
Supplied as a single value or vector/column of changeable values

0

ME
Marked Events – 0 denotes periods of sta�onary behaviour and 1 (or any integer number > 0) denotes periods of 
traversing movement. ME overrides ini�al speed input / DBA-derived speed (calculated within the func�on itself).  
NA’s and character values are replaced with zero.

1

lo Star�ng longitude coordinate to advance dead-reckon track from – Decimal format, e.g., 26.31989 0

la Star�ng la�tude coordinate to advance dead-reckon track from – Decimal format e.g., -06.11995 0

VP.lon
VP longitude coordinates – Decimal format. Missing reloca�on data expressed as either NA’s or 0’s. First (or last 
if reverse dead-reckoning) element/row allocated as lo within the func�on 

NULL

VP.lat
VP la�tude coordinates – Decimal format. Missing reloca�on data expressed as either NA’s or 0’s. First (or last if 
reverse dead-reckoning) element/row allocated as la within the func�on

NULL

VP.ME
TRUE = Supplied VPs removed at �mes when ME = 0 (relevant for high-res VP datasets, when loca�on error is high 
during rest). Note, this does not remove the element/row allocated as lo/la 

FALSE

method

How the func�on under-samples VPs prior to correc�on (subsequent to the VP.ME subset, if set to TRUE) –
“divide” = Fix kept every x (thresh) segments of supplied VPs, based on row number. The first and last fixes are 
always included
“�me” (s) = Fix kept every x (thresh) accumulated seconds (or the next available fix a�er a period of missing 
loca�onal data (≥ thresh). The first and last fixes are always included
“distance” = Fix kept every x (thresh) propor�onal segments of the total accumulated distance (m) between 
supplied VPs (using the stepping interval ‘dist.step’). The first and last fixes are always included
“all” = Every supplied VP kept (irrespec�ve of thresh value)

NULL

thresh
Threshold - Degree of VP under-sampling prior to dead-reckon correc�on. The frequency of under sampling 
depends on the method selected

1

dist.step
The stepping interval used for calcula�ng distance between VPs, both within the VP summary distance metrics 
(see Table. 3) and within the ‘method = distance' VP under-sampling protocol prior to VPC. For example, dist.step 
= 5 computes distance between every 5th VP (irrespec�ve of the �me difference between them)

1

bound
TRUE = VPC dead-reckoning is bounded by the first and last VP present
FALSE = VPC dead-reckoning is unbounded by the last available VP. The last dead-reckoned track segment inherits 
the previous correc�on factors

 TRUE

Outgoing
TRUE = ‘normal’ dead-reckoning procedure
FALSE = Reverse dead-reckoning. Note la and lo posi�ons should now be the finishing longitude and la�tude 
coordinates, respec�vely

TRUE

Plot

FALSE = No summary plots
TRUE = R graphics window ini�alized: VPC = 4 summary plots / no VPC = 1 summary plot (cf. top le�)
Top le�) Uncorrected dead-reckoned track (blue) and VP track (red). If currents are supplied, the blue track has 
currents integrated and an addi�onal green track with no current integra�on is plo¤ed
Top right) VPC dead-reckoned track (blue) in rela�on to VP track (red)
Bo�om le�) Net error (m) between VPs and dead-reckoned posi�ons (un-corrected = red and corrected = black). 
If currents are supplied, then uncorrected with no current integra�on = green and uncorrected with current 
integra�on = red.
Bo�om right) VPC corrected dead-reckoned track

TRUE

"VPC dead-reckoning
). No     

Ref. refers to the default value when no input is stated. Red shading represents required user inputs and green and orange shading reflect optional inputs (the latter 
change when using VPC). Note that if speed estimates (v) are directly inputted into the function then m and c (and possibly ME) defaults should not be changed. If 
either one of the VP.lon, VP.lat or method inputs is specified as NULL, then no VPC will occur
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may also opt to supply a ‘marked events’ (ME) vector (a 
marked event is a term we use that refers to a number of 
sequential (in time) data points within a dataset coded 
by integer values) to ensure dead-reckoned tracks are 
not advanced with non-animal movement behaviours. 
Within Gundog.Tracks, ME values of one or greater 
reflect progressive movement, and zero values code for 
stationary behaviour—dead-reckoned tracks are not 
advanced when ME = 0 (irrespective of the allocated 
speed). For example, in its simplest form, ME could 
be filled with binary 0 s and 1 s as governed by a DBA 
threshold (labelling the ME vector 0 in sleep and resting 
behaviour).

Pre‑determining speed
For terrestrial species (specifically bipeds and quadru-
peds), the interplay between peak heave acceleration 
amplitude and periodicity may be a useful indicator for 
the movement gait adopted [99], which may help decide 
the m-coefficient in the DBA–speed relationship [69]. 
There may be times, however, when DBA is an unreliable 
proxy of terrestrial speed [cf. 68]. At this time, given that 
the stride cycle can be easily detected by cyclic peaks in 
a given acceleration channel [e.g., 100, 101, 102], peak 
periodicity (and amplitude) may be used as a proxy of 
distance moved by providing a distance per step estimate 
(assuming constant distance travelled between step gaits 
if only concerning step periodicity—cf. “VPC dead-reck-
oning procedure in R” section and Additional file 1: Text 
S4).

DBA is a weak proxy of speed for many marine animals 
because overall body tissue density changes with depth 
when air is associated so that speed may be invariant of 
the movement kinematics [cf. 103, 104]. DBA is also a 
weak proxy for flying animals that glide at constant veloc-
ity, use thermals or bank [cf. 105]. One of the most com-
mon methods for determining animal speed in water is 
via devices that estimate flow or resistance rate [16, 19, 
64, 106]. These often have appreciable limitations, with 
currents, biofouling, blockage and turbulence affecting 
performance [64], and many of these issues are appli-
cable to volant species, so that bird speed measures are 
typically restricted to GPS-derived estimates of ground 
speed [cf. 107]. In the absence of a reliable motion sen-
sor-derived speed proxy, previous reported approximated 
speed estimates according to movement modes and/or 
topological whereabouts can be used [cf. 30]. For exam-
ple, for various diving animals such as penguins, a sim-
ple depth threshold may prove effective to differentiate 
between various previous reported modal ‘surface-rest-
ing’ and ‘underwater-commuting’ speeds [61, 108–110]. 
For volant species, whilst wingbeat frequency or ampli-
tude does not scale reliably with air speed [cf. 111], the 
interplay between both can decipher various flight modes 
(e.g., ‘cruising speed’ vs taking off/landing) [65, 112]. 
Furthermore, tail beat frequency has been shown to be 
a good predictor of swimming speed for various fish spe-
cies [113–115]. For diving animals, a proxy for horizontal 
speed can be obtained based on animal pitch and rate of 
change of depth [11, 116]. Specifically, the rate change of 
depth is divided by the tangent of the body pitch.

In any case, when high-resolution VP data are available 
(e.g., 0.01–10  Hz GPS), for instance, during short-term 
trial deployments, speed estimates can be compared 
alongside those derived between VPs and approximated 
according to behaviour type (elucidated from, for exam-
ple, accelerometer—[e.g., 117, 118], magnetometry—
[e.g., 105, 119], depth- [e.g., 120] or altitude—[e.g., 65] 
data), and uncorrected dead-reckoned tracks can be 
compared alongside VPs to determine where biases 
may occur visually. Furthermore, the correction factors 
obtained from the VPC process are viable comparators 
for detecting consistent under- or over-estimations of 
speed and/or heading offsets (e.g., due to tag placement). 
Essentially, when empirical speed evidence is unavail-
able, the user can ad hoc iteratively adjust allocated speed 
values or the underlying DBA–speed coefficients until 
uncorrected dead-reckoned track segments scale propor-
tionately to their aligned ground-truthed positions (pre-
VPC). Within Gundog.Tracks, the user can modulate m, 
c and ME values to switch between predetermined speed 
(m = 1, c = 0), DBA-derived speed (m > 0, c ≥ 0) and sta-
tionary behaviour (ME = 0).

Fig. 1 Schematic representation of a current flow vector (orange) 
(due to its speed and direction) being integrated to a given travel 
vector (blue). The x, y reflect the initial location of a dead‑reckoned 
track, x2 and y2 are the resultant location following the integration of 
a travel vector (prior to current integration) and xxx and yyy advance 
these x 2 and y2 values a step further in the direction of the current 
flow vector. The dashed lines indicate the magnitude of the x and y 
dimensions of travel (both pre‑ and post‑current flow integration) 
and the green line reflects the actual travel vector
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VPC procedure
Ground-truthing dead-reckoned tracks typically involves 
the linear drift correction method [cf. 26, 46], outlined 
in Constandache et al. [121] and Symington and Trigoni 
[122]. In essence, a shift vector aligns the starting dead-
reckoned path segment with the VP at time point one, 
after which the difference between the VP and dead-reck-
oned path segment at time point two is calculated to pro-
vide a correction vector that is applied linearly between 
time point one and time point two. Our method follows 
the protocols outlined by Walker et  al. [9], whereby the 
underlying correction coefficients (hereafter termed 
‘factors’) for both heading and (radial) distance are cal-
culated—adjusting the length and heading at each dead-
reckoned path segment until the end points align to each 
VP along the path. This process requires the trigonomet-
ric ‘as the crow flies’ Haversine formulae [123–125] which 
allows one to translate a distance across the curvature of 
the Earth’s surface (detailed within “VPC dead-reckoning 
procedure in R” section). The advantage of this method 
is that, whilst correction factors are constant between 
VPs, it does not assume that the dead-reckoned path 
deviates linearly over time from the true path because 
(radial) distance is multiplied by the distance correction 
factor. This ensures that parts of track where the animal 
is determined to be stationary (e.g., ME = 0) are left unal-
tered. The function’s method of VPC, automatically han-
dles NaN and Infinite (Inf ) values which can arise during 
the derivation of the distance correction factors (when 
no dead-reckoned movement occurs between successive 
VPs—detailed within “VPC dead-reckoning procedure 
in R” section). It is worth noting that even animals that 
travel in 3-D can be subject to the 2-D dead-reckoning 
formulae and Haversine computation of distance correc-
tion factors because we typically assume that both dead-
reckoned- and VP positions are aligned in vertical space 
(assuming reliable pressure—[60]/depth [13] data) and 
attempt to control for the horizontal component of speed 
[e.g., “VPC dead-reckoning procedure in R” section—
Eqs. (25, 27)] pre-correction. Although not covered here, 
we acknowledge that various state–space modelling tech-
niques have also been developed to georeference dead-
reckoned tracks [e.g., 11, 47].

Default inputs for calculations and outputs
Gundog.Tracks default input takes the form:

Gundog.Tracks(TS, h, v, elv = 0, p = NULL, 
cs = NULL, ch = NULL, m = 1, c = 0, ME = 1, 
lo = 0, la = 0, VP.lon = NULL, VP.lat = NULL, 
VP.ME = FALSE, method = NULL, thresh = 1, 
dist.step = 1, bound = TRUE, Outgo-
ing = TRUE, plot = FALSE),

with input modulated according to the animal in ques-
tion and data available (see Fig. 2).

The function outputs a data frame containing vari-
ous descriptive columns which, depending on the input, 
includes (but is not limited to):

• The correction factors used
• Heading and radial distance estimates (both pre- and 

post-current integration and/or VPC)
• Distance moved and speed estimates (both in 2-D 

and 3-D when elevation/depth data supplied)
• Net error between dead-reckoned positions and VPs 

(both pre- and post-correction)
• Various VP summaries including notation of when 

VPs are present and which fixes were used in the cor-
rection process.

When specified, 2-D summary plots demonstrating the 
relationship between dead-reckoned positions and VPs 
(both pre- and post-current integration and/or VPC) are 
provided (e.g., Fig.  3). Table  3 details all the function’s 
available outputs (modulated according to input). Gun-
dog.Tracks uses the na.locf() function from the ‘zoo’ pack-
age [126] and the slice() function from the ‘dplyr’ package 
[127] (both are checked as dependencies and installed 
when required within this function). Output 2-D dis-
tance/speed estimates are calculated with the Haversine 
formula. When depth/elevation data are supplied (and 
changes between sets of coordinates) 3-D distance/speed 
estimates are calculated with a variant of the Euclidean 
Formula—converting x, y, z from polar to Cartesian coor-
dinates, and incorporating the Earth’s oblate spheroid [cf. 
World Geodetic System (WGS84)], via conversion from 
Geodetic- to Geocentric-latitude [cf. 128].

The interplay between numerical precision in R, cor-
rection rate and net error can make more than one 
round of adjustment necessary for dead-reckoning fixes 
to accord exactly with ground-truthed locations (cf. 
Fig. 4a), particularly given that slight discrepancies accu-
mulate over time. Each iteration of the correction pro-
cess produces a tighter adherence between estimated and 
ground-truthed positions [cf. 9]. Typically, this does not 
involve more than two rounds of VPC to achieve a maxi-
mum net error of 0.01 m (the threshold used within Gun-
dog.Tracks) across a ca. (1 Hz) 2-week-long track. For an 
indication of processing times see Additional file 1: Text 
S6, Fig. S4; for example dead-reckoning a lion at 1  Hz 
for 7 (continuous) days (with plot = TRUE, dist.step = 5, 
VP.ME = TRUE, method = “time” and thresh = 3600) 
took 25 s to compute (on a MSI GP72 7RD Leopard lap-
top with intel core i7 processor). Logically, the net error 
between VPs and (corrected) dead-reckoned positions is 
positively correlated to the time between corrections (cf. 
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Fig. 4b) [cf. 46], although the rate of net error ‘drop-off’ 
is dependent on the accuracy of the initial (uncorrected) 
dead-reckoned track (cf. Fig. 5), itself, modulated by the 
extent of system errors (Table 1) and initial user-defined 
track scaling.

Within this process, people assume VPs to be perfect, 
however, across all VP determining methods, the rate 
and accuracy of data acquisition is highly moderated 

according to the permissiveness of the environment, such 
as high-density shrub or submersion in water [e.g., 38, 
129, 130]. GPS technology is arguably the most popular 
and widely used method for determining estimates of 
free-ranging animal movement [cf. 131, 132, 133]. This 
is because inspection of data is less complex and time-
consuming than some of the alternatives, whilst improve-
ments in design and battery longevity have enabled 

Fig. 2 Schematic of the conceptual workflow involved when dead‑reckoning using Gundog.Tracks—elaborated within “VPC dead‑reckoning 
procedure in R” section. Note Gundog.Peaks (Additional file 3) is a peak finder function that locates peaks based on local signal maxima and 
Gundog.Compass (Additional file 2) is a function to correct iron distortions from tri‑axial magnetometry data and subsequently compute 
tilt‑compensated heading. Both functions are elaborated within “VPC dead‑reckoning procedure in R” section and in Additional file 1. The direction 
of workflow and key questions asked follow from green—(pre‑processing and data alignment) to purple—(computing heading) sections, before 
splitting into blue—(air/water) and brown—(land) sections (computing speed) and culminating at the red section (final pre‑dead reckoning 
checks/data formats and post‑dead‑reckoning checks/plots) in conjunction with the process of using Gundog.Tracks in R (yellow)
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GPS units to be attached to a plethora of animals (up to 
almost four orders of magnitude in size and mass [cf. 11, 
134]) and record at high frequencies (e.g., ≥ 1  Hz [131, 
135]). Consequently, GPS units are unparalleled for pro-
viding such detailed quantification of space-use out-
side of the VPC dead-reckoning framework, and are the 
most utilised VPC method within (including the case 
study datasets within this study). However, locational 
accuracy (excepting precision error radius [cf. 136] and 
variable latency [cf. 137]) can vary by a few metres or be 

appreciably more depending upon the propagation of sig-
nal quality and/or receiver reception capability [38, 138, 
139]. As such, VP error becomes more relevant at smaller 
scales of assessed movement and this is the reason why 
VP distance-moved estimates can go from being typically 
underestimated at low frequencies (due to linear interpo-
lation of tortuous movements) [26, 140, 141] to overesti-
mated at high frequencies [97, 136] and result in highly 
variable correction factors within the VPC dead-reckon-
ing process [cf. 10]. Indeed, judicious selection of VPC 

Fig. 3 Dead‑reckoned (DR) movement path of lion as provided by Gundog.Tracks summary plots (within the initialised R graphics window). This 
is an approximate 2‑week trajectory over an approximated total travel (DR) distance of > 142 km. (Pre‑filtered) GPS (red) was sampled at 1 Hz 
and derived heading and speed measurements were sub‑sampled to 1 Hz (initial acceleration/magnetometry data were recorded at 40 Hz). The 
VPC dead‑reckoned track (blue) was constructed using DBA–GPS‑derived speed regression estimates and corrected approx. every 6 h. Note, for 
dead‑reckoning within fluid media, an additional green dead‑reckoned track with current integration and its associated distance estimates are also 
plotted (pre‑correction) when wind/ocean currents are supplied (cf. Fig. 6). Accumulated 3‑D DR distance is shown when elevation/depth data are 
supplied
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Table 3 Gundog.Tracks data frame output names and their parameters

Func�on output Descrip�on Ref

Row.number Row number

Timestamp Supplied �mestamp - POSIXct object

DR.seconds Accumulated �me (s) based on the supplied �mestamp

Heading Supplied heading (0
o
 to 360

o
)

Marked.events Supplied Marked events (or replicated default)

DBA.or.speed Supplied DBA (g or m/s
2
) or speed (m/s)

Pitch Supplied pitch (o)

Radial.distance The calculated q-coefficient (prior to VPC) (see “VPC dead-reckoning procedure in R” sec�on—Eq. (26)) #

Eleva�on Supplied eleva�on / depth (m)

Eleva�on.diff Rate change of supplied eleva�on/depth (m/s) - (eleva�on difference / �me difference between rows)

Current.strength Supplied current speed (m/s)

Current.heading Supplied current heading (0
o
 to 360

o
)

Heading.current.integrated Updated heading (0
o
 to 360

o
) following addi�on of current vectors (prior to VPC) #

Radial.distance.current.integrated Updated q-coefficient following addi�on of current vectors (prior to VPC) #

DR.longitude Dead-reckoned longitude coordinates – Decimal format (prior to VPC)

DR.la�tude Dead-reckoned la�tude coordinates – Decimal format (prior to VPC)

DR.longitude.corr Corrected dead-reckoned longitude coordinates – Decimal format (post VPC)

DR.la�tude.corr Corrected dead-reckoned la�tude coordinates – Decimal format (post VPC)

Dist.corr.factor Distance correc�on factor (observa�ons carried forward) ↑ #

Head.corr.factor Heading correc�on factor (0
o
 to 360

o
) (observa�ons carried forward) ↑ #

Heading.corr Corrected heading (0
o
 to 360

o
) (post VPC) #

Radial.distance.corr Corrected q-coefficient (post VPC) #

Distance.error.before.correc�on
Distance (m) between uncorrected dead-reckoned posi�ons and VPs (observa�ons carried forward), 

subsequent to sub-sampling according to ME, if VP.ME = TRUE 
↑

Distance.error.a	er.correc�on
Distance (m) between corrected dead-reckoned posi�ons and VPs (observa�ons carried forward), 

subsequent to sub-sampling according to ME, if VP.ME = TRUE
↑

DR.distance.2D Two-dimensional distance moved (m) between dead-reckoned fixes *

DR.distance.3D Three-dimensional distance moved (m) between dead-reckoned fixes *

DR.cumula�ve.distance.2D Accumulated two-dimensional distance moved (m) between dead-reckoned fixes *

DR.cumula�ve.distance.3D Accumulated three-dimensional distance moved (m) between dead-reckoned fixes *

DR.distance.from.start.2D Two-dimensional (straight-line) distance moved (m) from star�ng posi�on *

DR.distance.from.start.3D Three-dimensional (straight-line) distance moved (m) from the star�ng posi�on *

DR.speed.2D Horizontal speed (m/s) (DR.distance.2D / �me difference between rows) *

DR.speed.3D Total speed (m/s) (DR.distance.3D / �me difference between rows) *

VP.seconds Accumulated �me (s) between supplied VPs (observa�ons carried forward) 

VP.longitude Supplied VP longitude values (observa�ons carried forward), sub-sampled according to ME, if VP.ME = TRUE ↑

VP.la�tude Supplied VP la�tude values (observa�ons carried forward), sub-sampled according to ME, if VP.ME = TRUE ↑
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rate is critical in maximising dead-reckoned track accu-
racy when relocation data are taken at fine spatial- and 
temporal resolutions [26] (cf. Table 2—‘VP.ME’, ‘method’, 
‘thresh’ and ‘dist.step’ inputs to aid in modulating VPC 
rate). Likewise, the initial screening for location anoma-
lies, across all VP methods and sampling intervals, is 
important so as to prevent incorrect distortion of tracks. 
Put simply, the higher the quality of VP data input, the 
greater the robustness of the VPC dead-reckoning 
output.

It was suggested by Bidder et  al. [10], that the next 
stage in this work is to derive a standardised set of rules 
to maximise the value of both GPS (though this applies to 
any VP method) and dead-reckoned data in line with the 
questions being asked. We argue that consistent trends 
in the magnitude and/or bias of correction factors can be 
used as a diagnostic tool for elucidating: (i) VP inaccu-
racy (e.g., possibly manifested by extremely high distance 
and heading correction factors), (ii) required alterations 
to the DBA–speed relationship [e.g., due to traversing 

Table 3 (continued)

VP.fix.present
Denotes when a fix was present (1) or absent (0), subsequent to sub-sampling according to ME, if VP.ME = 

TRUE

VP.used.to.correct Denotes which VPs were used to correct (1) and which VPs were ignored (0)

Number.of.VPCs Increments by 1 each �me a VP was used to correct (observa�ons carried forward)  ↑

VP.thresh
Replicates the thresh value set (or default) or warns the user that addi�onal VP under-sampling was 

required if ‘Inf’ values produced

VP.distance.2D
Two-dimensional distance moved (m) between VPs, subsequent to sub-sampling according to ME, if VP.ME 

= TRUE and using the stepping interval ‘dist.step’

VP.cumula�ve.distance.2D
Accumulated two-dimensional distance moved (m) between VPs, subsequent to sub-sampling according to 

ME, if VP.ME = TRUE and using the stepping interval ‘dist.step’

The shading of Ref refers to when the outputs occur; red shading = always, purple shading = when pitch data are supplied, green shading = when elevation/depth 
data are supplied, blue = when current data are supplied and orange = when the user opts to undertake VPC. The symbol * demonstrates that the metrics will be 
derived from VPC tracks when correction is initialised. Note that, subsequent to reverse dead-reckoning, the data frame is reverted (back to original time order), 
though as a result, observations appear to be carried backwards in some instances, indicated by ↑. Due to the nature of reverse dead-reckoning (cf. Additional 
file 4), some input fields are shifted forward one row following the initial inversion of data. As such, fields indicated by #, are one row further forward in time (this is 
important when relating Head.corr.factor and Heading.corr output to the equivalent (uncorrected) Heading output. However, when currents are integrated, the Head.
corr.factor and Heading.corr outputs refer to Heading.current.integrated and these are synchronised row-wise. All heading related data are rotated back 180 degrees 
following reverse dead-reckoning

Fig. 4 Net error between (GPS‑corrected) dead‑reckoned and GPS positions for a track from 5 African lions. a Maximum net error (m) between 
ground‑truthed GPS and time‑matched dead‑reckoned positions after one iteration of correction, both as a function of GPS correction rate [one 
correction per 1—(red), 12—(green) and 24—(blue) hours] and underlying m‑coefficient used to determine the DBA‑derived speed. Data from 5 
lions (individual denoted by symbol shape) over a period of 12 days. Note that the difference in error varies according to individual, initial speed 
estimate and the rate of correction. b Net error between dead‑reckoned positions and all available GPS fixes, according to correction rate (data from 
the same 5 lions), subsequent to the iterative procedure of GPS correction (maximum distance between GPS fix used in correction procedure and 
according dead‑reckoned position < 0.01 m). Boxes denote the median and 25–75% interquartile range with a blue ‘loess’ smooth line. Whiskers 
extend to 1.5 * interquartile range in both directions
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across different substrates (e.g., Fig. 5)] and (iii) drift due 
to current vectors [cf. 16, 46] (e.g., Fig. 6).

The case‑studies
An important question to address is how often to do VP 
correction. This is obviously dependent upon the scales of 
movement elicited and the medium in/on which the ani-
mal in question navigates. Put simply, one should VP cor-
rect as little as possible, but as much as is necessary and 
we elaborate on this using our model species operating in 
different media. Within Fig. 5, the 1 Hz GPS track (blue) 
is plotted alongside two different dead-reckoned tracks; 
[(a) = uncorrected and (b) = corrected approx. every 
30 min (method = “time”)] from 12 days of data acquisi-
tion of one lion. There were two variations in the method 
of scaling the dead-reckoned tracks; a track based on a 
Vectorial Dynamic Body Acceleration (VeDBA) threshold 
(red), and a track advanced based on periods of identified 
movement (purple). The m-coefficient and c-constant 
values were determined from the VeDBA–GPS speed 
relationship (Fig. 5, inset  a1) and the Movement Verified 
Filtering (MVF) protocol outlined by Gunner et  al. [97] 
was used to depict movement and anomalous GPS fixes 
(green) and to compute reasonable GPS-derived speed 
estimates. This case study demonstrates three impor-
tant points. Firstly, on its own, dead-reckoning is subject 
to substantial drift and so VPC is essential for resetting 
this error. The more frequent a user corrects, the more 
accurate the dead-reckon track becomes (relative to VPs), 
though VP error can also be substantial, especially dur-
ing rest behaviour (see Gunner et al. [97] for demonstra-
tion of this). For collared animals, heading measurements 
can become inaccurate at times of erratic collar roll (cf. 
Table 1) and conjointly, GPS performance is also reduced 
when antenna position becomes compromised [e.g., 142].

Secondly, and in conjunction to the above, irrespective 
of VPC rate, the initial allocation of speed is important. 
Here, only dead-reckoning identified movement periods 
resulted in greater accuracy than just advancing tracks 
based on a VeDBA threshold. This is because even sta-
tionary behaviours can impart appreciable DBA [e.g., 
143] (beyond the threshold), and thus wrongly advance 
tracks. The false patterns of tortuosity created from 
this, whilst scaled and possibly rotated with VPC (cf. 
“VPC dead-reckoning procedure in R” section), remain 

incorporated to some degree. Whilst not illustrated here, 
advancing tracks without a VeDBA threshold would 
incur greater error still. Lastly, in this section, the dis-
tance correction factor was consistently high (Fig. 5, inset 
 b1) as the lion travelled along the Botswana fence bound-
ary, perhaps as a result of the animal walking on the com-
pact dirt road at this location (Fig. 5, inset  a2), altering the 
VeDBA–speed relationship. Such patterns in correction 
factors (whether consistent or highly variable) can high-
light issues with the underlying track scaling.

Where animals move in water or air, obtaining accu-
rate estimates of speed is more difficult without the use 
of speed sensors. Naturally, the resolution and accuracy 
of initial dead-reckoning track scaling (pre-VPC) reduces 
when speed has to be approximated using constant values 
according to behaviour type (a strategy used here). There 
is a balance between initial dead-reckoning accuracy 
and required VPC. The lower the initial track accuracy, 
the more frequent it should be corrected, and additional 
drift caused by external-force vectors compounds this 
issue. Within Fig.  6, we illustrate the value that current 
correction, dependent on current information, brings to 
the VPC procedure if the derived track is to be superim-
posed on the environment. Here, one Magellanic pen-
guin was dead-reckoned with and without tidal vector 
integration (instantaneous tidal currents were deduced 
from a 3-D numerical model validated in the region 
[144], at hourly, 1   km2 grid nodes). Commuting speed 
was allocated 2.1 m/s [cf. 61, 145] and changed according 
to “VPC dead-reckoning procedure in R” section—R41. 
Surface period ‘rest’ speed were allocated 0.416 m/s [cf. 
108]. VP accuracy improved considerably both pre- and 
post- VPC when currents were integrated which points 
to the value of acquiring current data if possible, particu-
larly if VPs are sparse. Notably the combination of dead-
reckoning and VP estimation of both movements relative 
to the ground and fluid, may detail specific orientation 
strategies used and thus can have value for assessing the 
ability of drift compensation in aquatic or volant animals 
[46, 92]

For all our case study animals, GPS units were set to 
record at 1  Hz. With this temporal resolution (which 
is not always possible anyway due to the high-power 
requirements of the GPS), the value of dead-reckoning 
would seem questionable. However, dead-reckoning can: 

(See figure on next page.)
Fig. 5 Dead‑reckoned lion track in relation to GPS positions [a uncorrected and b corrected—approx. every 30 min (black circles)]. The start of 
the track (lo and la) is denoted with a black x. Three corresponding sections of each track are denoted with the same number and the finishing 
positions denoted with a circle (coloured according to its reference track). Note that the horizontal straight‑line sections (cf. yellow arrow) 
result from the lion following the Botswana boundary fence (which this individual eventually crossed). Mean net error between (corrected) 
dead‑reckoned positions and all available GPS fixes was higher for tracks resolved using a VeDBA threshold (0.11 g), than for tracks advanced only at 
times of depicted movement using the MVF method
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Fig. 6 One Magellanic penguin’s dead‑reckoned foraging trip at sea, lasting approximately 9 h (yellow arrow denotes the trajectory direction 
over time. Black track = GPS. Fifteen corrections (black circles) were made (method = “divide”). For comparison, the grey dotted track is the 
GPS‑corrected dead‑reckoned track with current integration approx. every 1 min (where possible‑method = “time”) (a). Note the difference of 
net error between dead‑reckoned positions and all available GPS fixes across the various tracks [insert = grey track] (b). Both uncorrected and 
corrected dead‑reckoned tracks had less error after current integration (black arrows vector every 5 min) and this was reflected in the direction and 
magnitude of heading correction factors required per unit time (c). Heading correction factors obtained from the track corrected approx. every 
1 min; the colour of the scale bar indicates the extent of the heading correction factor required)
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(i) work when GPS cannot—such as when an animal is 
underwater [e.g., 18] or in thick forest [cf. 2] and it can 
(ii) by-pass the issues arising from GPS inaccuracies such 
as ‘jitter’ [cf. 97], allowing for more accurate and finer 
scale delineations of movement. This is illustrated in 
Fig. 7, in which 12 outgoing (green) and incoming (blue) 
dead-reckoned trajectories from Magellanic penguins 
walking to and from their nest are plotted. Incoming 
tracks were reverse-dead-reckoned (Outgoing = FALSE, 
bound = FALSE), because the GPS did not always reg-
ister fixes for minutes after birds left the water and 
because nest coordinates were known (Fig. 7, inset). This 
explains why the blue tracks extend into the sea rather 
than encroach further inland when speed was overesti-
mated. What is evident is that even ‘accurate’ GPS paths 
are coarsely resolved due to precision errors. Indeed, 
even with little or no GPS error, this can greatly com-
promise movement estimates [cf. 136]. Conversely, the 
precision of the dead-reckoned tracks is only limited by 
the amount of initial motion sensor data under-sampling 
(usually required in some capacity to make datasets more 
manageable and less computationally expensive). Such 
fine-scale estimates can therefore (with suitable VPC) 
allow users to define movement in space with unprec-
edented resolution. The benefit of this is that such reso-
lution can resolve important metrics of movement, such 
as step duration [cf. 146] and the number and extent of 
turns made [cf. 147]; useful parameters for investigat-
ing navigation and foraging strategies according to envi-
ronmental circumstance—though, such parameters are 
also useful without superimposing on the environment. 
Moreover, even dead-reckoned tracks that are sparsely 
corrected or never corrected can detail important move-
ment-specific behaviours [12], for example, circling 
behaviour [148].

Ultimately, the higher the frequency at which dead-
reckoning is undertaken, the better the resolution and 
detail of reconstructed tracks. However, accuracy only 
improves up to a point because extrapolated travel vec-
tors (heading and speed estimates) nearly always com-
prise some degree of error (no matter how small) and so, 
with very high frequencies (> 1 Hz), more error is accu-
mulated per unit time [cf. 16, 44]. In particular, when the 
temporal resolution of dead-reckoning results in a spa-
tial resolution dominated more by sensor noise than by 
‘actual’ movement of the animal in question, dead-reck-
oning accuracy will begin to decrease (at least pre-VPC). 
The extent of this will depend on the size, speed and life-
style of the animal in question. For example, the benefits 
of dead-reckoning a lion at 40  Hz rather than 1  Hz are 
questionable (how often does a lion turn substantially 
within a second?), particularly given the additional com-
putation time (cf. Additional file 1: Text S6) and possible 

error (relative to VPs). As such, and akin with VP under-
sampling, choice of under-sampling data to be dead-reck-
oned may have implications to the resultant accuracy, 
and this will be moderated according to the scales (and 
media) of movement elicited by the animal in question. 
Beyond this, Fig.  7 also demonstrates the importance 
of initial track advancement, with three variants used, 
including step counts instead of DBA.

Finally, obtaining accurate estimates of altitude or 
depth allow users to plot and investigate scales of contin-
uous movement in three dimensions and at times when 
VP success rate fails completely (such as underwater). We 
demonstrate this using the Imperial cormorant in Fig. 8. 
After visual inspection of data, uncorrected tracks were 
scaled according to the following speeds: periods of flying 
allocated 12 m/s, surface ‘rest’ periods allocated 0.1 m/s, 
bottom phase of dives allocated 0.4 m/s and descent and 
ascent speeds modulated according to “VPC dead-reck-
oning procedure in R” section—Eq.  (25). Note that ele-
vation was not resolved during flying periods (although 
flying periods were dead-reckoned). Regardless of the 
current limitations, the VPC dead-reckoning proce-
dure represents a substantial advance for resolving, and 
thereby allowing investigation of, continuous, fine-scale, 
free-ranging 2- or 3-D space-use with all its underlying 
scales of tortuosity and distances moved (e.g., Figs. 7 and 
8).

VPC dead‑reckoning procedure in R
Preparing the three axes of rotation for derivation 
of heading
The tilt-compensated compass method is a well-known 
practice for deriving heading [e.g., 21, 22, 81]. Correct 
coordinate system axis alignment and suitable calibra-
tion of tri-axial magnetometry data [cf. 149] are crucial 
pre-processors, without which, heading estimates would 
likely incorporate substantial error [cf. 21, 149]. The tilt-
compensated compass method described below (fol-
lowing the framework outlined by Pedley [21]), requires 
the aerospace (x-North, y-East, z-Down) (right-handed) 
coordinate system, or ‘NED’ (cf. Additional file  1: Text 
S2, Fig. S1). We provide examples of axis alignment, out-
line the importance of transforming between coordinate 
frames (relative to the Earths fixed frame) and recom-
mend a universal configuration calibration procedure to 
aid correct axis alignment within Additional file  1: Text 
S2.

Multiple mathematically sophisticated algorithms 
have been developed to correct distortions from each 
magnetometer channel’s output [e.g., 23, 149, 150, 
151, 152]. We provide an annotated R script—Gundog.
Compass (Additional file 2) that corrects both soft and 
hard iron distortions from tri-axial magnetometry data 
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Fig. 7 Twelve outgoing (green) and incoming (blue) dead‑reckoned trajectories from Magellanic penguins walking to and from their nest. Three 
variants of track advancement were used: a A VeDBA threshold (0.1 g) and constant m‑coefficient (1.4) (b), depicted movement periods using the 
LoCoD method to identify steps (cf. Wilson et al. 2018) and constant m‑coefficient (1.4) and c depicted individual steps within depicted movement 
periods, from which a constant distance estimate (0.16 m) was multiplied by step frequency (x̄ no. steps/s) (full details within Additional file 1: 
Text S4) (c). Note that the accuracy with respect to the radial distance can be evaluated by examining the track stops in relation to the shore‑line. 
DBA‑derived speed estimates were typically overestimated for incoming tracks, due to the birds being heavier (and thus impart greater DBA per 
stide cycle) after foraing. Tracks (from c) were GPS‑corrected (d) (method = “distance”, dist.step = 5, VP.ME = TRUE, thresh = between 8 and 15 
(depending on track length) approx. every 50 m). A portion of the GPS‑corrected dead‑reckoned tracks (bottom panel) are magnified (2 iterations) 
to show the difference in resolution of movement tortuosity, between GPS and dead‑reckoned tracks
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and subsequently computes tilt-compensated heading 
(0° to 360°). Within this function, there are two main 
methods of correction to choose from, based on the 
mathematical protocols outlined by Vitali [153]—least-
square error approximation (constructing an ellipsoid 
rotation matrix) and Winer [154]—scale biases with 
simple orthogonal rescaling (avoiding matrices alto-
gether). We expand on this user-defined function-
ality, as well as outlining the causes of soft and hard 
iron distortions and the initial calibration procedure 
required to correct such distortions within Additional 
file 1: Text S3.

Tilt‑compensated heading derivation
Device orientation is expressed in terms of a sequence of 
Euler angle [roll (Φ), pitch (θ), yaw (Ψ)] rotations about 
the x-, y- and z-axes, respectively, relative to the (iner-
tial) Earths fixed frame of reference (e.g., Earth-Centre, 
Earth-Fixed (ECEF) system) [155]. Being a vector field 
sensor with two degrees of rotational freedom, acceler-
ometers are insensitive to rotations about the gravity vec-
tor and thus discerning heading requires the arctangent 
of the ratio between the x- and y-orthogonal magnetom-
eter measurements [156]. For the correct computation of 
heading, these two channels need to be aligned parallel to 

Fig. 8 GPS‑corrected dead‑reckoned tracks of Imperial cormorants foraging at sea: a 15 birds (blue = male, red = female). b Shows one of these 
tracks illustrated in 3‑D. Note gaps between dives are either associated with current drift, while the bird is resting at the sea surface, or periods of 
flight. c and d show the descent, bottom phase and ascent of a given dive in both 2‑D (c) and 3‑D, respectively
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the earth’s surface. This is achieved by correcting any ori-
entation (de-rotation) according to pitch and roll angles 
(postural offsets) which can be deduced from accelera-
tion. These angles are typically approximated by deriving 
gravity-based (static) acceleration [see 72, 157] from each 
channel by employing one of four approaches using: (i) 
a running mean [e.g., 72, 86], (ii) a Fast-Fourier transfor-
mation [e.g., 158], (iii) a high-pass filter [e.g., 159] or (iv) 
a Kalman-filter [e.g., 160]. Here, we use a computation-
ally simple running mean over 2 s [72] (Eq. 1):

where w is an integer specifying the window size and 
Gx,y,z and Ax,y,z represents the smoothed and raw compo-
nents of acceleration, respectively. In the absence of lin-
ear (dynamic) acceleration [see 157, 161], values of Gx,y,z 
reflect the device orientation with respect to the earth’s 
reference frame (though see Table. 1), reading approx. 
+ 1  g when orientated directly towards the gravity vec-
tor (down), − 1 g against the gravity vector (up) and 0 g 
at perpendicular to it (horizontal). In R, the ‘zoo’ package 
[126] provides useful wrappers to apply arithmetic opera-
tions in a rolling fashion  (R1:4).

 (R1) install.packages("zoo") ; 
library(zoo)

 (R2) Gx = rollapply(Ax, width=w, 
FUN=mean, align="center", 
fill="extend")

 (R3) Gy = rollapply(Ay, width=w, 
FUN=mean, align="center", 
fill="extend")

 (R4) Gz = rollapply(Az, width=w, 
FUN=mean, align="center", 
fill="extend")

Here, w should be replaced with the window width 
of choice (e.g., for 20  Hz data and a smoothing of 2  s 
required, replace w with 40). We use a centre-aligned 
index (compared to the rolling window of observations), 
with “extend” to indicate repetition of the leftmost or 
rightmost non-NA value (though fill can equally be set as 
NA, 0, etc.).

Importantly, for correct trigonometric formulae out-
put within the tilt-compensated compass method, the 
vectorial sum of static acceleration ( Gx,y,z ) and calibrated 
magnetometry (Mx,y,z ) measurements across all three 
spatial-dimensions must be normalised (to a unit vector) 
with a scaled magnitude (radius) of one (Eqs. 2, 3,  R5:10). 
It was previously demonstrated that, for fast moving 

(1)Gx,y,z =
1

w

i+ w
2

∑

j=i− w
2

Ax,y,z

animals, high frequency of body posture changes could 
cause discrepancy between static acceleration data and 
magnetism data, which could consequently affect head-
ing estimation [162]. Although this effect would not 
change general shapes of movement paths, we suggest 
that prior to the normalisation process (and magnetic 
calibration procedure), it may be of value to initially 
smooth out (see Eq. 1,  R1:4) small deviations within mag-
netometry data, both to avoid this type of error and to 
reduce the magnitude of anomalous spikes in magnetic 
inference. We used a smoothing window of 10 events for 
the 40 Hz datasets used in this study.

 (R5) NGx = Gx / sqrt(Gx^2 + Gy^2 + 
Gz^2)

 (R6) NGy = Gy / sqrt(Gx^2 + Gy^2 + 
Gz^2)

 (R7) NGz = Gz / sqrt(Gx^2 + Gy^2 + 
Gz^2)

 (R8) NMx = Mx / sqrt(Mx^2 + My^2 + 
Mz^2)

 (R9) NMy = My / sqrt(Mx^2 + My^2 + 
Mz^2)

 (R10) NMz = Mz / sqrt(Mx^2 + My^2 + 
Mz^2)

Depending on deployment position, the device-carried 
NED coordinate frame (the x-, y-, z-axes) may not corre-
spond with the animal’s body-carried NED frame. When 
this occurs, prior to deriving animal orientation, the nor-
malised gravity and magnetic vectors are required to be 
corrected so that their measurements are expressed rela-
tive to the body frame of the animal [45]. This requires 
three rotation sequences, using 3 by 3 rotation matrices 
(Eqs. 4, 6) and involves two intermediate frames. The aer-
ospace sequence used here is as follows:

1. A right-handed rotation ( C ), about the z-axis axis of 
the device’s frame ( D ), through angle Ψ (Eq. 4), to get 
to the first intermediate frame (F1).

2. A right-handed rotation ( C ) about the y-axis at F1 , 
through angle θ (Eq. 5), to get to the second interme-
diate frame ( F2).

(2)





NGx

NGy

NGz



 =
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Gx · Gx + Gy · Gy + Gz · Gz
·
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3. A right-handed rotation ( C ) about the x-axis at F2 , 
through angle Φ (Eq. 6), to get to the animal’s body 
frame ( B).

Note the right-handed rule of rotation; a positive 
� reflects a clockwise rotation of the anterior–poste-
rior axis (relative to North), a positive θ reflects a nose-
upward tilt of this axis and a positive � reflects a bank 
angle tilt to the right about this axis. Reversing the 
direction of two axes causes a 180° inversion about the 
remaining axis and interchanging two axes (e.g., x with y) 
or reversing the direction of one or all three axes reverses 
the ‘handedness’ of rotation [right-handed—‘counter-
clockwise’ vs. left-handed—‘clockwise’ (when viewed 
from the tip of the z-axis)]. Rotation matrices are orthog-
onal (unitary), with every row and column being linearly 
independent and normal to every other row and column. 
The consequence of this is that the inverse of a rotation 
matrix is its transpose [163] [which essentially reverses 
the direction of rotation, and within (Eqs.  4, 6), this is 
achieved by negating the sign of the sines]. Importantly, 
because rotation matrices are not symmetric, the order of 
matrix multiplication is important [45] (otherwise, Euler 
angles are without meaning for describing orientation). 

(4)C
(�)
F1/D

=





cos (�) sin (�) 0
− sin (�) cos (�) 0

0 0 1





(5)C
(θ)
F2/F1

=





cos (θ) 0 − sin (θ)
0 1 0

sin (θ) 0 cos (θ)





(6)C
(�)
B/F2

=





1 0 0
0 cos (�) sin (�)

0 − sin (�) cos (�)





The product of the conventionally used aerospace rota-
tion sequence outlined above (to get from the tag frame 
to the animal’s body frame) can be expressed as (Eq. 7).

When matrix multiplied out, this yields (Eq. 8)—often 
referred to as a Direction Cosine Matrix (DCM). The 
composition of this DCM varies according the (six pos-
sible) orderings of the three rotation matrices (Eqs.  4, 
6) and the direction of intended rotation relative to the 
direction of measured g within the NED system (see 
Additional file 1: Text S2).

Note the left-handed rule of reading the vectorial nota-
tion of ordered rotations, for example C(�,θ ,�)

B/D  means 
going from the device frame to the animal’s body frame, 
by first rotating about the z-axis (though angle � ), fol-
lowed by the y-axis (though angle θ) and then lastly the 
x-axis (though angle � ). The device offset can be esti-
mated from direct observation or deduced using photo-
graphs or from the tag data itself. For example, assuming 
that ‘normal animal posture’ has no pitch and roll angle 
offset, then a tri-axial spherical plot of static acceleration 
[164] would show a densely populated band of datapoints 
at the cross-sectional origin of 0  g about the x- and 
y-axes, respectively, when the tag and body NED axes are 
in alignment.
NGx,y,z and NMx,y,z are pre-multiplied by the DCM to 

compensate for offset. However, device offset is often 
parametrised by roll, pitch and/or yaw angles relative 
to the animal’s body frame and thus, the device actually 
requires de-rotation (switching the ‘handedness’ of rota-
tion) according to these values. For example, a + 45° yaw 
offset requires an inverse rotation about the z-axis by 
− 45°, rather than a further + 45° rotation. This simply 
involves taking the transpose of the DCM (Eq. 9), which 
is the same as the transpose of each of the individual 
rotation matrices (Eqs. 10, 11).

(7)C
(�,θ ,�)
B/D = C

(�)
B/F2

· C
(θ)
F2/F1

· C
(�)
F1/D

(8)C
(�,θ ,�)
B/D =





cos (�) · cos (θ) sin (�) · cos (θ) − sin (θ)

cos (�) · sin (θ) · sin (�)− sin (�) · cos (�) sin (�) · sin (θ) · sin (�)+ cos (�) · cos (�) cos (θ) · sin (�)

cos (�) · sin (θ) · cos (�)+ sin (�) · sin (�) sin (�) · sin (θ) · cos (�)− cos (�) · sin (�) cos (θ) · cos (�)
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cos (�) · cos (θ) cos (�) · sin (θ) · sin (�)− sin (�) · cos (�) cos (�) · sin (θ) · cos (�)+ sin (�) · sin (�)

sin (�) · cos (θ) sin (�) · sin (θ) · sin (�)+ cos (�) · cos (�) sin (�) · sin (θ) · sin (�)− cos (�) · sin (�)

− sin (θ) cos (θ) · sin (�) cos (θ) · cos (�)
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where T is the matrix transpose and resultant NGbx,y,z 
and NMbx,y,z vectors are expressed in the animal’s body-
carried NED frame. The input of these gravity and mag-
netic vectors are supplied as 3 by 1 column matrices for 
true matrix multiplication, and when expanding out 
(Eq. 11), this results in (Eq. 12) [substituting NM with NG 
expands out (Eq. 10)].

In R then, the alignment of device to body axes for both 
gravity and magnetic vectors can be performed using the 
following procedure  (R11:22).

 (R11) RollSinAngle = sin(Roll * pi/180)
 (R12) RollCosAngle = cos(Roll * pi/180)
 (R13) PitchSinAngle = sin(Pitch * 

pi/180)
 (R14) PitchCosAngle = cos(Pitch * 

pi/180)
 (R15) YawSinAngle = sin(Yaw * pi/180)
 (R16) YawCosAngle = cos(Yaw * pi/180)
 (R17) NGbx = NGx * YawCosAngle * Pitch-

CosAngle + NGy * (YawCosAngle *
 PitchSinAngle * RollSinAngle - YawSi-

nAngle * RollCosAngle) + NGz *
 (YawCosAngle * PitchSinAngle * RollCo-

sAngle + YawSinAngle * RollSinAn-
gle)

 (R18) NGby = NGx * YawSinAngle * Pitch-
CosAngle + NGy * (YawSinAngle *

 PitchSinAngle * RollSinAngle + YawCo-
sAngle * RollCosAngle) + NGz *

 (YawSinAngle * PitchSinAngle * RollSi-
nAngle - YawCosAngle * RollSinAn-
gle)

 (R19) NGbz = -NGx * PitchSinAngle + NGy 
* PitchCosAngle * RollSinAngle +

 NGz * PitchCosAngle * RollCosAngle
 (R20) NMbx = NMx * YawCosAngle * Pitch-

CosAngle + NMy * (YawCosAngle *

(10)
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NMx · cos (�) · cos (θ)+NMy · (cos (�) · sin (θ) · sin (�)− sin (�) · cos (�))+NMz · (cos (�) · sin (θ) · cos (�)+ sin (�) · sin (�))

NMx · sin (�) · cos (θ)+NMy · (sin (�) · sin (θ) · sin (�)+ cos (�) · cos (�))+NMz · (sin (�) · sin(θ) · sin(�)− cos(�) · sin(�))

−NMx · sin (θ)+NMy · cos (θ) · sin (�)+NMz · cos (θ) · cos(�)







D

 PitchSinAngle * RollSinAngle - YawSi-
nAngle * RollCosAngle) + NMz *

 (YawCosAngle * PitchSinAngle * RollCo-
sAngle + YawSinAngle * RollSinAn-
gle)

 (R21) NMby = NMx * YawSinAngle * Pitch-
CosAngle + NMy * (YawSinAngle *

 PitchSinAngle * RollSinAngle - YawSi-
nAngle * RollCosAngle) + NMz *

 (YawSinAngle * PitchSinAngle * RollSi-
nAngle - YawCosAngle * RollSinAn-
gle)

 (R22) NMbz = -NMx * PitchSinAngle + NMy 
* PitchCosAngle * RollSinAngle +

 NMz * PitchCosAngle * RollCosAngle
Here, Roll, Pitch and Yaw inputs denote the angular off-

set of the device, relative to the animal body frame. Note, 
standard trigonometric functions operate in radians, not 
degrees. In base R, π = pi. Multiplying values by pi/180 
coverts degrees into radians, whilst multiplying values 
by 180/pi does the reverse. This rotation correction pro-
cedure is implemented within Gundog.Compass when 
pitch, roll and/or yaw offsets are supplied (Additional 
file 2).

Following the alignment of device and body axes, pitch 
and roll of the animal are calculated from the DCM, and 
because there are multiple variations in the order that 
rotation sequences can be composed and applied, there 
are also different valid equations that output different 
pitch and roll angle estimates, for equivalent static accel-
eration input. The convention is to use formulae that 
have no dependence on yaw rotation and restrict either 
the pitch or the roll angles within the range − 90° to + 90° 
(but not both), with the other axis of rotation able to lie 
between − 180° and 180°, thereby eliminating duplicate 
solutions at multiples of 360°. Multiplying (Eq. 8) by the 
measured Earth’s gravitational field vector (+ 1  g when 
initially aligned downwards along the z-axis) simplifies 
down to (Eq. 13). The accelerometer output for this aer-
ospace rotation sequence is thus only dependent on the 
roll and pitch angles which can be solved (Eqs.  14, 15), 
allowing roll angles the greater freedom [161]. This is 
relevant for studies using collar-mounted tags, whereby 
collar may roll > 90° in either direction from default 
orientation.
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The equation for roll (Eq. 15), however, has a region of 
instability at obtuse pitch angles (e.g., for NED systems, 
the x-axis points directly up or down, with respect to the 
Earth’s frame of reference). Whilst there is no ‘gold stand-
ard’ solution to this problem of singularity (using Euler 
angles), an attractive circumvention (detailed within 
[161]) is to modify (Eq. 15) and add a very small percent-
age ( µ ) of the NGbx reading into the denominator, pre-
venting it ever being zero and thus driving roll angles to 
zero when pitch approaches −/+90° for stability (Eq. 16).

where sign(NGbz) is allocated the value + 1 when NGbz 
is non-negative and − 1, when NGbz is negative (recovers 
directionality of NGbz , subsequent to the square-root). 
Taken together then, in R, pitch and roll are computed 
according to,  (R24:25) with outputs within the range of 
− 90° to + 90° for pitch and − 180° to + 180° for roll, and 
this is the formula we use in the tilt-compensated method 
outlined below (and within Additional file 2).

 (R23) mu = 0.01 ; sign = ifelse(NGbz >= 
0, 1, -1)

 (R24) Pitch = atan2(-NGbx, sqrt(NGby^2 
+ NGbz^2)) * 180/pi

 (R25) Roll = atan2(NGby, sign * 
sqrt(NGbz^2 + mu * NGbx^2)) * 
180/pi

Here, prior to the derivation of pitch and roll, μ is allo-
cated the value 0.01 and a vector termed ‘sign’ is created, 

(13)

NGbxyz







0

0

1






=







cos (�) · cos (θ) sin (�) · cos (θ)

cos (�) · sin (θ) · sin (�)− sin (�) · cos (�) sin (�) · sin (θ) · sin (�)+ cos (�) · cos (�)

cos (�) · sin (θ) · cos (�)+ sin (�) · sin (�) sin (�) · sin (θ) · cos (�)− cos (�) · sin (�)

− sin(θ)

cos(θ) · sin(�)

cos(θ) · cos(�)






·







0

0

1






=







− sin (θ)

cos (θ) · sin (�)

cos (θ) · cos (�)







(14)tan θxyz =





−NGbx
�

NGby2 +NGbz2



 ⇒ θ = atan2

�

−NGbx,

�

�

NGby ·NGby +NGbz ·NGbz
�

�

·
180

π

(15)

tan�xyz =

(

NGby

NGbz

)

⇒ � = atan2
(

NGby, NGbz
)

·
180

π

(16)

� = atan2
(

NGby, sign(NGbz)

·

√

(NGbz ·NGbz + µ ·NGbx ·NGbx)
)

·
180

π

containing 1  s and − 1  s according to the direction of 
measured g from NGbz  (R23).

The magnetic vector of the device is then de-rotated 
to the Earth frame (tilt-corrected) by pre-multiplying by 
the product of the inverse roll multiplied by inverse pitch 
rotation matrix (Eq. 17), which when expanded out gives 
(Eq. 18).

Here NMbfx,y,z are the calibrated, normalised mag-
netometry data (expressed in the animal’s body-carried 
NED frame) after tilt-correction. Finally, yaw (ψ) (head-
ing—now defined by the compass convention, relative to 
magnetic North) can be computed from the NMbfx and 
NMbfy (Eq. 19) via;

We outline the R code for this procedure below  (R26:34).

 (R26) RollSinAngle = sin(Roll * pi/180)
 (R27) RollCosAngle = cos(Roll * pi/180)
 (R28) PitchSinAngle = sin(Pitch * 

pi/180)
 (R29) PitchCosAngle = cos(Pitch * 

pi/180)
 (R30) NMbfx = NMbx * PitchCosAngle + 

NMby * PitchSinAngle * RollSinAn-
gle +

 NMbz * PitchSinAngle * RollCosAngle
 (R31) NMbfy = NMby * RollCosAngle – 

NMbz * RollSinAngle

(17)





NMbfx

NMbfy

NMbfz



 =





cos (θ) sin (θ) · sin (�) sin (θ) · cos (�)

0 cos (�) − sin (�)

− sin (θ) cos (θ) · sin (�) cos (θ) · cos (�)





·





NMbx

NMby

NMbz





(18)







NMbfx

NMbfy

NMbfz






=







NMbx · cos (θ)+NMby · sin (θ) · sin (�)+NMbz · sin (θ) · cos (�)

NMy · cos (�)−NMbz · sin (�)

−NMbx · sin (θ)+NMby · cos (θ) · sin (�)+NMbz · cos (θ) · cos (�)







(19)ψ = atan2
(

−NMbfy, NMbfx
)

·
180

π
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 (R32) NMbfz = -NMbx * PitchSinAngle + 
NMby * PitchCosAngle + RollSinAn-
gle +

 NMbz * PitchCosAngle * RollCosAngle
 (R33) Yaw = atan2(-NMfby, NMfbx) * 180/

pi
 (R34) Yaw = ifelse(Yaw < 0, Yaw + 360, 

Yaw)

Note, yaw output from  (R33) uses the scale − 180° to 
+ 180°.  (R34) converts to the scale 0° to  360o (specifi-
cally, 0° to 359̇°). This is also achieved by using a modulus 
(mod) operator (Eq.  20,  R35), which in base R takes the 
form %%.

 (R35) Yaw = (360 + Yaw) %% 360

Magnetic declination is defined as the angle on the 
horizontal plane between magnetic north and true 
north [165]. Prior to dead-reckoning, magnetic decli-
nation should be summed to heading values to convert 
from magnetic to true North [166]. There are many 
online sources to calculate the magnetic declination of 
an area [e.g., 167]. Notably, logical corrections may need 
to be performed to ensure data does not exceed either 
circular direction after applying magnetic declination 
 (R36).

 (R36) h = ifelse(h < 0, h + 360, h) ; h 
= ifelse(h > 360, h - 360, h),

 where h refers to the vector containing the heading 
data. Should the user not correct for axis align-
ment between the device and animal body frame 
(cf. Eqs. 4–12,  R11:22) then a reasonable post-cor-
rection for small discrepancies about the yaw axis 
would be to subtract the difference to h values at 
this point.

Preparing speed estimates
The vectorial dynamic body acceleration (VeDBA) 
(Eq. 21) [cf. 67, 168] was our choice of DBA-based speed 
proxy for terrestrial dead-reckoning purposes. This is 
given by:

where v represents VeDBA, Dx , Dy and Dz are the 
dynamic acceleration values from each axis, themselves 
obtained by subtracting each axis’ static component of 

(20)ψ = mod(360+ ψ , 360)

(21)v =

√

(

D2
x + D2

y + D2
z

)

acceleration (cf. Eq.  1,  R1:4) from their raw equivalent 
 (R37).

 (R37) v = sqrt((Ax - Gx)^2 + (Ay - 
Gy)^2 + (Az - Gz)^2),

 where Ax, Ay, Az and Gx, Gy, Gz are the raw and static 
(smoothed) values of each channel’s recorded 
acceleration.

We recommend implementing a running mean (cf. 
Eq.  1,  R1:4) to raw VeDBA values to ensure that both 
acceleration and deceleration components of a stride 
cycle are incorporated together per unit time and to 
reduce the magnitude of small temporal spikes (likely 
not attributable to the scale of movement elicited [cf. 97]. 
Choice of smoothing window size is dependent on the 
scale of movement being investigated, though as a basic 
rule, we suggest 1 to 2  s. For similar reasons, it is also 
worth post-smoothing raw pitch, roll and heading out-
puts, although heading requires a circular mean (Eqs. 22, 
23) [cf. 169]:

where hj and h are the unsmoothed and smoothed 
heading values, θp the arithmetic mean after converting 
degrees to cartesian coordinates and mod refers to the 
modulo operator.

In R, the above formula can be made into a function 
 (R38), to be applied within the ‘rollapply’ wrapper (replac-
ing ‘FUN = mean’ with ‘FUN = Circ.Avg’) (cf.  R1:4).

 (R38) Circ.Avg = function(x){

  H.East = mean(sin(x * pi / 180))

 H.North = mean(cos(x * pi / 180))

 MH =(atan2(H.East, H.North)) * 180/pi

 MH = (360 + MH) %% 360

 return(MH)

 }
Speed ( s ) can be estimated from VeDBA ( v ) via (Eq. 24).

(22)

θp = a tan 2





1

n

n
�

j=i

sin
�

hj ·
π

180

�

,
1

n

n
�

j=i

cos
�

hj ·
π

180

�





(23)h = mod

(

360+

(

θp ·
180

π

)

, 360

)

(24)s = (v ·m)+ c
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where m is the multiplicative coefficient and c is a con-
stant [10, 69]. Here, a user can define various bouts 
of movement from motion sensor data (e.g., via vari-
ous machine-learning approaches (for review see Far-
rahi et al. [170]) or the Boolean-based LoCoD method 
[101]) and/or substrate condition (e.g., via GPS), to be 
cross-referenced when allocating variants of the speed 
coefficients. As a simple example, in R, should walk-
ing (coded for as 1) and running (coded for as 2) be 
teased apart from all other (non-moving) data (coded 
for as 0) within a Marked Events vector (ME), then 
ME can be used to allocate various m (and if applica-
ble, c ) values using simple ‘ifelse’ statements  (R39:40).

 (R39) m = ifelse(ME == 1, 1.5, 
ifelse(ME == 2, 3.5, 0))

 (R40) c = ifelse(ME > 0, 0.1, 0)

Here, walking is given an arbitrary coefficient of 1.5 
and running, 3.5 with a value of 0.1 for their constants. 
All other ME values are given a 0 coefficient and 0 con-
stant, which results in no speed at such times, regardless 
of DBA magnitude.

By‑passing DBA as a speed proxy
Dividing the number of steps detected within a given 
rolling window length (cf.  R1:4), by the window length 
(s) gives an estimated step count per second. This can 
be converted to speed by multiplying by a distance per 
step estimate (assuming constant distance travelled 
between step gaits). We review this further in Addi-
tional file  1: Text S4, including a simple peak finder 
function—Gundog.Peaks (Additonal file 3) that locates 
peaks based on local signal maxima, using a given roll-
ing window, with each candidate peak filtered accord-
ing to whether it surpassed a threshold height (in 
conjunction with other potential user-defined thresh-
olds). Note, this method can equally be applied to 
non-terrestrial species, using flipper/tail beats instead, 
where appropriate.

For diving animals, a proxy for horizontal speed can 
be obtained based on animal pitch and rate change in 
depth [47, 116]. Specifically, rate change of depth ( �d ) 
(units in m/s) is divided by the tangent of pitch ( θ ) 
(converted from degrees to radians) (Eq. 25):

Here, resultant speed values need to be made absolute 
(positive). This calculation is only valid when the direction 
of movement is the same as the direction of the animal’s 
longitudinal axis (equal pitch assumption) [cf. 47] and 

(25)s =
�d

tan
(

θ ·
π
180

)

thus should only be calculated at times when the animal 
is travelling ‘ballistically’ (at considerable vertical speed).

 (R41) s = ifelse(abs(p) >= 10, abs(RCD 
/ tan(p * pi/180)), s)

In the above example  (R41), nominal speed values are 
overwritten with the trigonometric formula output 
(Eq.  25) at times of ‘appreciable’ pitch (10°) [cf. 171], 
where RCD is the rate change of depth and p is the pitch 
(in radians). An upper limit should be imposed on speed 
values derived in this way because values can become 
highly inflated when the pitch angle is particularly acute.

Converting speed to a distance coefficient
Speed (s) estimates are multiplied by the time differ-
ence between the values ( TD ) to give a distance estimate 
(units in metres) which, in turn, standardises coefficient 
comparisons across datasets sampled at different rates. 
These distance values are then divided by the approxi-
mate radius of the earth (R = 6,378,137 m) to give a radial 
distance coefficient ( q ) [see 172] (Eq. 26)”

Assuming that high-resolution depth data are not avail-
able, but ‘absolute’ speed estimates have been obtained, 
then an alternative to Eq.  25, (in accordance with the 
equal pitch assumption) is to derive horizontal distance 
estimates by multiplying the absolute distance by the 
cosine of the pitch ( θ ) (converted from degrees to radi-
ans), which can equally be performed on the radial dis-
tance (Eq. 27):

In R, to determine accurate lengths of time between 
values, it is best to save date and time variables together 
as POSIX class [173]. Creating timestamp (TS) objects 
with POSIXct class enables greater control and manipula-
tion of time data. This makes computing the rolling time 
difference ( TD ; units in seconds) between data points 
simple  (R42):

 (R42) TD = c(0, difftime(TS, lag(TS), 
units = "secs")[-1])

We detail how to create timestamp objects of POSIXct 
class within Additional file 1: Text S5, including format-
ting with decimal seconds (important for infra-second 
datasets) and various codes useful for manipulating data 
to be dead-reckoned based on time.

In R then, following the computation of TD , q is 
obtained via  (R43:44).

(26)q =
s · TD

R

(27)q = q · cos
(

θ ·
π

180

)
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 (R43) s = (v * m) + c 
 (R44) q = (s * TD) / 6378137 

Note, if a negative c intercept is used (e.g., to allow for 
some body movement without translation), then any neg-
ative speed values would need to be equated to zero as an 
additional step.

As previously mentioned, the ME vector (progressive 
movement coded by integer values greater than zero 
(e.g., 1) and stationary behaviour coded by zero) can be 
used to ensure q (essentially the distance moved) is zero 
when ME reads zero, ensuring dead-reckoned tracks are 
not advanced at such times, regardless of the computed 
speed  (R45).

 (R45) q = ifelse(ME == 0, 0, q)

Derivation of coordinates
Once q and h are obtained, coordinates are advanced 
using (Eqs. 28, 29);

where Lat0 , Lati and Lon0 , Loni are the previous and pre-
sent latitude and longitude coordinates, respectively (in 
radians), h is the (present) heading (in radians) and q is 
the (present) distance coefficient.

In R, the above can be performed iteratively within a 
for-loop (iteration of code repeated per consecutive 
ith element of data;  R49). Initialising the output latitude 
(DR.lat) and longitude (DR.lon) variables to the required 
length (e.g., as governed by the vector length of other 
input data (heading, speed, etc.) speeds up processing 
time  (R46). Within the trigonometric dead-reckoning for-
mulae, the starting latitude (la) and longitude (lo) coordi-
nates and heading ( h ) values must be supplied in radians 
 (R47). The la and lo values are saved as the first elements 
of the DR.lat and DR.lon vectors to be advanced, respec-
tively  (R48).

 (R46) DR.lat = rep(NA, length(h)) ; 
DR.lon = rep(NA, length(h))

 (R47) la = la * pi/180 ; lo = lo * 
pi/180 ; h = h * pi/180

 (R48) DR.lat[1] = la DR.lon[1] = lo
 (R49) for(i in 2:length(DR.lat)) {
 DR.lat[i] = asin(sin(DR.lat[i-1]) * 

cos(q[i]) n+ cos(DR.lat[i-1]) *
 sin(q[i]) * cos(h[i]))

(28)
Lati = asin(sin Lat0 · cos q + cos Lat0 · sin q · cos h)

(29)
Loni =Lon0 + atan2((sin h · sin q · cos Lat0),

(cos q − sin Lat0 · sin Lati))

 DR.lon[i] = DR.lon[i-1] + 
atan2(sin(h[i]) * sin(q[i]) *

 cos(DR.lat[i-1]), cos(q[i]) - sin(DR.
lat[i-1]) * sin(DR.lat[i]))

 }

Reverse dead‑reckoning
For this, firstly, the time difference is computed as usual 
 (R50) and the dimensions of each vector required in the 
dead-reckoning calculation are reversed. We bind all 
relevant vectors into a data frame (df )  (R51), subsequent 
to reversing data frame dimensions  (R52); the last row 
becomes the first row, second to last row becomes the 
second, etc. Note, this can equally be achieved by using 
the rev() function within base R, on each individual vec-
tor. These reversed columns are now restored as vectors 
 (R53) and shifted forward by one element  (R54). This is 
required for correct alignment in time so that dead-reck-
oning works in exactly the opposite manner to ‘forward’ 
dead-reckoning.

 (R50) TD = c(0, difftime(TS, lag(TS), 
units = "secs")[-1])

 (R51) df = data.frame(TD, h, v, m, c, 
ME)

 (R52) df = df[dim(df)[1]:1, ]
 (R53) TD = df[, ’TD’] ; h = df[, ’h’] ; 

v = df[, ’v’] ;
 m = df[, ’m’] ; c = df[, ’c’] ; ME = 

df[, ’ME’]
 (R54) TD = c(NA, TD[-length(TD)]) ; h = 

c(NA, h[-length(h)]) ;
 v = c(NA, v[-length(v)]) ; m = c(NA, 

m[- length(m)]) ;
 c = c(NA, c[-length(c)]) ; ME = c(NA, 

ME[-length(ME)])
The next step is to rotate heading 180° and correct for 

its circular nature  (R55).

 (R55) h = h - 180 ; h = ifelse(h < 0, h 
+ 360, h)

Lastly, q is determined and DR.lon and DR.lat are 
advanced based on the dead-reckoning formula (cf. 
 R46:49), except in this instance, the first element of DR.
lon and DR.lat needs to be supplied by the ‘known’ last lo 
and la coordinates.

Integrating current vectors
In R, current vectors can be added according to  (R56:60). 
Current speed (cs) is in m/s (ensure values are absolute) 
and current heading (ch) uses the scale 0° to 360°. Note 
the use of ‘yy’ and ‘xx’ vectors, storing the previous DR.
lat and DR.lon coordinates prior to implementing the 
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next ‘current drift’ vector per iteration. The current speed 
is also standardised according to the time period length 

and Earth’s radius (analogous to the derivation of q ). 
When reverse dead-reckoning, it is important to ensure 
that cs and ch are included in the steps outlined above 
 (R50:55).

 (R56) DR.lat = rep(NA, length(h)) ; 
DR.lon = rep(NA, length(h))

 (R57) xx <- rep(NA, length(cs)) ; yy <- 
rep(NA, length(cs))

 (R58) la = la * pi/180 ; lo = lo * 
pi/180 ;

 h = h * pi/180 ; ch = ch * pi/180
 (R59) DR.lat[1] = la DR.lon[1] = lo 
 (R60) for(i in 2:length(DR.lat)) { 
 DR.lat[i] = asin(sin(DR.lat[i-1]) * 

cos(q[i]) + cos(DR.lat[i-1]) *
 sin(q[i]) * cos(h[i]))
 yy[i] = DR.lat[i]
 DR.lon[i] = DR.lon[i-1] + 

atan2(sin(h[i]) * sin(q[i]) *
 cos(DR.lat[i-1]), cos(q[i]) - sin(DR.

lat[i-1]) * sin(DR.lat[i]))
 xx[i] = DR.lon[i]
 DR.lat[i] = asin(sin(yy[i]) * 

cos((cs[i] * TD[i]) / 6378137) +
 cos(yy[i]) * sin((cs[i] * TD[i]) / 

6378137) * cos(ch[i]))
 DR.lon[i] = xx[i] + atan2(sin(ch[i]) * 

sin((cs[i] * TD[i]) /
 6378137) * cos(yy[i]), cos((cs[i] * 

TD[i]) / 6378137) - sin(yy[i]) *
 sin(DR.lat[i]))
 }

VPC procedure
Specifically, this method entails calculating the difference 
of Haversine distance (net error) and bearing (from true 
North) between consecutive VPs and the correspond-
ing time-matched dead-reckoned track positions. The 
trigonometric Haversine formulae (Eqs. 30, 31) are used 
to calculate the great-circle distance ( d ) and great circu-
lar bearing ( b ) between consecutive VPs and consecu-
tive (time-matched) dead-reckoned positions (note we 
use the term ‘bearing’ to differentiate between heading 

estimates from motion data—though they are essentially 
the same).

where R is the Earth’s radius and d , the output in metres.

where �Lon represents Loni − Lon0 , �Lat represents 
Lati − Lat0 and b output is in the scale − 180° to + 180°. To 
convert b to the conventional 0° to 360° scale, 360 should 
be added to values < 0.

For each VP, the distance is divided by the dead-reck-
oned distance providing a distance correction factor 
(ratio; Eq.  32). The heading correction factor is com-
puted by subtracting the dead-reckoned bearing from 
the VP bearing (Eq.  33). To ensure that difference does 
not exceed 180° in either circular direction, 360 should 
be added to values < − 180 and 360 subtracted from val-
ues > 180. A simple example of why this is relevant can be 
illustrated by subtracting a dead-reckoned bearing value 
of 359° from a VP bearing value of 1°—post-correction, 
the difference is + 2°.

All intermediate q values are multiplied by the distance 
correction factor and the heading correction factor is 
added to all intermediate h values (ensuring that h values 
are in degrees). To ensure circular range is maintained 
between 0° and 360°, 360 should be subtracted from val-
ues > 360 and added to values < 0.

Specifically, we follow the protocol illustrated within 
Fig. 9 for intermediate values. Note the formulae to cal-
culate both distance ( d ; Eq.  30) and bearing ( b ; Eq.  31) 
between two points, are also used to recalculate both the 
heading ( h ) and radial distance ( q ) between current-inte-
grated dead-reckoned fixes (pre-VPC; cf.  R60). Note that 
the Haversine distance is required to be converted back 
to radial distance by dividing by R (R = 6,378,137).

In R, the formulae to calculate the great-circle dis-
tance and great circular bearing are saved within the 
disty  (R61) and beary  (R62) functions, respectively, where 
lon1, lat1, long2 and lat2 represent longitude and lati-
tude positions (decimal format) at ti and ti+1 , ( t repre-
senting time).

(30)d = 2·R·sin−1

(
√

sin2
(

Lati − Lat0

2

)

+ cos (Lat0) · cos (Lati) · sin
2

(

Loni − Lon0

2

)

)

(31)

b = atan2

(

sin (�Lon) · cos (Lati),

cos (Lat0) · sin (�Lat) · cos (Lati) · cos (�Lon)

)

·
180

π

(32)Distancecorr.factor =
DistanceVP

DistanceDR

(33)Headingcorr.factor = BearingVP − BearingDR
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 (R61) disty = function(long1, lat1, 
long2, lat2) {

 long1 = long1 * pi/180 ; long2 = 
long2 * pi/180 ; lat1 = lat1 *

 pi/180 ; lat2 = lat2 * pi/180

 a = sin((lat2 - lat1) / 2) * sin((lat2 
- lat1) / 2) + cos(lat1) *

 cos(lat2) * sin((long2 - long1) / 2) * 
sin((long2 - long1) / 2)

 c = 2 * atan2(sqrt(a), sqrt(1 - a))

 d = 6378137 * c

 return(d)

 }
 (R62) beary = function(long1, lat1, 

long2, lat2) {
 long1 = long1 * pi/180 ; long2 = long2 

* pi/180 ; lat1 = lat1 * pi/1
 80 ; lat2 = lat2 * pi/180
 a = sin(long2 - long1)*cos(lat2)
 b = cos(lat1) * sin(lat2) - sin(lat1) 

* cos(lat2) * cos(long2 - long1)
 c = ((atan2(a, b) / pi)*180)
 return(c)
 }

Fig. 9 Schematic diagram illustrating the order of fixes used when calculating the Distancecorr.factor and Headingcorr.factor (difference of both GPS 
and dead‑reckoned (DR) positions between arrow heads). Note the discrepancy with the order at which these correction factors are applied to 
intermediate DR positions (as denoted by colour shading). Known starting position denoted with asterisk
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Below, we outline an example of VPC in R and assume 
VP coordinates (decimal format) are aligned in the same 
length vectors/columns as motion sensor-derived data, 
e.g., heading, DBA/speed, etc., with the corresponding 
indexed (element-/row-wise) time. Typically, motion sen-
sor data are recorded at much higher frequency so that 
there are many dead-reckoned fixes between sequential 
VPs. As such, in the example below, we assume NAs are 
expressed in the VP longitude and latitude fields at times 
of missing locational data. This approach of synchronis-
ing VP—with motion sensor data also applies when inte-
grating current data; assuming ch and cs are element/
row-wise matched to the relevant VP grid node.

Firstly, an indexing row number (Row.number) vector, 
the length of the data used in the dead-reckoning opera-
tion (e.g., h ) is created  (R63), which is relevant for merg-
ing full-sized and under-sampled data frames together 
(seen later). Together, the row number, (uncorrected) 
dead-reckoned longitude and latitude coordinates, VP 
longitude and latitude coordinates, heading and the 
radial distance vectors are inputted column-wise into a 
‘main’ data frame, termed ‘df ’  (R64; user-assigned column 
names of each vector are within quotation marks). This 
data frame is then filtered removing rows with missing 
VP data and stored as df.sub  (R65). This under-sampled 
data frame thus, row-wise, contains the time-matched 
dead-reckoned and ground-truthed positions. The VPC 
process is analogous for reverse dead-reckoned tracks—
although VP.lon and VP.lat must also be reversed [Row.
number remains in ascending order (not reversed)]. The 
first element of VP.lon and VP.lat must be the lo and la, 
respectively (or for reverse dead-reckoning, the last ele-
ment prior to reversing these vectors).

 (R63) Row.number = rep(1:length(h))
 (R64) df = data.frame(Row.number, ’DR.

longitude’ = DR.lon,
 ’DR.latitude’ = DR.lat, ’VP.longitude’ 

= VP.lon,
 ’VP.latitude’ = VP.lat, h, q)
 (R65) df.sub = df[!with(df, is.na(VP.

longitude) | is.na(VP.latitude)) 
,]

Both sets of dead-reckoned and VP coordinates are 
shifted backwards one row within new columns termed; 
DR.loni, DR.lati, VP.loni, VP.lati  (R66). Row-wise, these 
columns represent the consecutive fix at ti+1 with their 
originals being ti . This provides the correct format for 
the inputs required within the disty (cf.  R61) and beary 
(cf.  R62) functions. The distances between consecu-
tive dead-reckoned estimates are stored within the col-
umn termed DR.distance  (R67) and the corresponding 

distances between VPs are stored within the column 
termed VP.distance  (R68). The VP.distance is divided by 
the DR.distance to provide the distance correction factor, 
termed Dist.corr.factor  (R69). Importantly here, an ifelse 
statement is incorporated so that Dist.corr.factor defaults 
to zero at times when both VP.distance and DR.distance 
are zero (otherwise dividing zero by zero in R produces 
NaN’s).

 (R66) df.sub$DR.loni = c(df.sub[-1, 
’DR.longitude’], NA)

 df.sub$DR.lati = c(df.sub[-1, ’DR.
latitude’], NA)

 df.sub$VP.loni = c(df.sub[-1, ’VP.
longitude’], NA)

 df.sub$VP.lati = c(df.sub[-1, ’VP.
latitude’], NA)

 (R67) df.sub$DR.distance= disty(df.
sub$DR.longitude,

 df.sub$DR.latitude, df.sub$DR.loni, 
df.sub$DR.lati)

 (R68) df.sub$VP.distance= disty(df.
sub$VP.longitude,

 df.sub$VP.latitude, df.sub$VP.loni, 
df.sub$VP.lati)

 (R69) df.sub$Dist.corr.factor = 
ifelse(df.sub$VP.distance == 0 &

 df.sub$DR.distance == 0, 0, df.sub$VP.
distance / df.sub$DR.distance)

Analogous to the distance correction, the bearings 
between consecutive dead-reckoned estimates are stored 
within the column termed DR.head  (R70) and the cor-
responding bearings between VPs are stored within the 
column termed VP.head  (R71). Logical corrections are 
performed to convert both to the 0° to 360° scale  (R72), 
DR.head is subtracted from VP.head providing the head-
ing correction factor, termed Head.corr.factor  (R73) 
and further logical corrections are performed to ensure 
a minimum and maximum difference range between 
− 180° to +  180o  (R74).

 (R70) df.sub$DR.head = beary(df.sub$DR.
longitude,

 df.sub$DR.latitude, df.sub$DR.loni, 
df.sub$DR.lati)

 (R71) df.sub$VP.head = beary(df.sub$VP.
longitude,

 df.sub$VP.latitude, df.sub$VP.loni, 
df.sub$VP.lati)
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 (R72) df.sub$DR.head = ifelse(df.
sub$DR.head < 0,

 df.sub$DR.head + 360, df.sub$DR.head)
 df.sub$VP.head = ifelse(df.sub$VP.head 

< 0,
 df.sub$VP.head + 360, df.sub$VP.head)
 (R73) df.sub$Head.corr.factor = 

df.sub$VP.head - df.sub$DR.head 
 (R74) df.sub$Head.corr.factor = 

ifelse(df.sub$Head.corr.factor < 
-180,

 (df.sub$Head.corr.factor + 360), 
df.sub$Head.corr.factor)

 df.sub$Head.corr.factor = ifelse(df.
sub$Head.corr.factor > 180,

 df.sub$Head.corr.factor - 360), 
df.sub$Head.corr.factor)

Only the relevant columns; Row.number, Dist.corr.fac-
tor and Head.corr.factor are preserved  (R75) and merged 
back into the main data frame (df ) based on the matching 
row numbers  (R76). Both Dist.corr.factor and Head.corr.
factor express NA’s between VPs. These are replaced with 
the most recent non-NA (observations carried forwards; 
 R77). Dist.corr.factor and Head.corr.factor values are 
shifted forward by one row  (R78) for correct alignment 
purposes with respect to h and q values to be adjusted 
(cf. Fig.  9;  R79:80). A logical correction is performed to 
ensure that a 0° to 360° circular scale is maintained after 
the heading correction  (R81). Note, the na.locf() function 
is required from the ‘zoo’ package, to replace NA values 
with the last non-NA value.

 (R75) df.sub = df.sub[, c(’Row.number’, 
’Dist.corr.factor’, ’Head.corr.
factor’)]

 (R76) df = merge(df, df.sub, by = "Row.
number", all = TRUE)

 (R77) df$Dist.corr.factor = 
na.locf(df$Dist.corr.factor)

 df$Head.corr.factor = na.locf(df$Head.
corr.factor)

 (R78) df$Dist.corr.factor = c(NA, 
df$Dist.corr.factor[-nrow(df)])

 df$Head.corr.factor = c(NA, df$Head.
corr.factor[-nrow(df)])

 (R79) q = (df$q * df$Dist.corr.factor)
 (R80) h = (df$h + df$Head.corr.factor)
 (R81) h = ifelse(h > 360, h - 360, h) ; 

h = ifelse(h < 0, h + 360, h)

These updated coefficients are substituted into the 
dead-reckoning formula (cf.  R46:49) and this process is 
repeated iteratively (using the updated dead-reckoned 

coordinates, heading and radial distance each time) until 
dead-reckoning fixes accord ‘exactly’ (Gundog.Tracks uses 
a threshold of 0.01 m) with ground-truthed locations. An 
important pitfall of the correction process to consider is 
that dividing ‘any’ value (e.g., > 0) by 0 results in infinite 
(Inf ) values in R. This can arise during the correction 
process when there is a given distance between con-
secutive VPs, but no displacement between the accord-
ing dead-reckoned positions. This can be a consequence 
of ground-truthing too frequently (typically relevant to 
high-res GPS studies), where positional noise is more 
apparent during rest periods [cf. 97] and/or wrongly 
assigned speed estimates/ME values. Gundog.Tracks 
automatically resamples VPC rate where necessary to 
avoid Inf values, essentially by changing the VPC rate to 
avoid using successive VPs at times of no dead-reckoned 
track advancement. Lastly, Gundog.Tracks outputs mes-
sages to the user’s console, detailing up to six stages of 
dead-reckoning progression, which includes reporting 
the maximum distance (units in metres) between dead-
reckoned- and ground-truthed positions (used within 
the VPC procedure) at each iteration of correction and 
whether automatic VPC resampling due to Inf values 
occurred.

Conclusion
We have provided a comprehensive, fully integrated 
application of the dead-reckoning procedure within the 
framework of the programming language, R, from pre-
processing raw tri-axial accelerometery and magnetom-
etry data to VPC dead-reckoning. We have highlighted 
important considerations to increase the accuracy of the 
analytical procedure and to avoid misinterpretation of 
error. We have also supplied extensive Additional files 
1, 2, 3, 4 and 5 and supporting functions to aid the pro-
cess of deriving fine-scale movement paths, including 
the protocols to correct magnetometry data and derive 
(tilt-compensated) heading. Importantly, we have dem-
onstrated the value of Gundog.Tracks; a multi-functional 
and user-friendly tool to derive animal movement paths 
across all media of travel, with detailed input flexibil-
ity and output summaries. We suggest the next phase in 
advancing the utility of animal dead-reckoning includes 
looking for ‘track signatures’ that may signify a particu-
lar behaviour or reference a particular ‘ground-truthed’ 
location. Lastly to advance the utility of Gundog.Tracks, 
we aim to optimise future iterations of the online code to 
speed up computation time on larger datasets (e.g., sub-
second data collected over many months).

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40317‑ 021‑ 00245‑z.

https://doi.org/10.1186/s40317-021-00245-z
https://doi.org/10.1186/s40317-021-00245-z
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 Additional file 1. Methods expanded. Text S1. Device set up and cap‑
ture protocol. Text S2. The importance of having the correct coordinate 
system and axis alignment. Text S3. Magnetometer calibration, rotation 
correction and deriving yaw (heading)—Gundog.Compass() explained. 
Text S4. Step counts as a distance estimate—Gundog.Peaks() explained. 
Text S5. Time Data in R (POSIXct). Text S6. VPC dead‑reckoning—Gundog.
Tracks()—explained. 

Additional file 2. Gundog.Compass() (.R file). 

Additional file 3. Gundog.Peaks() (.R file). 

Additional file 4. Gundog.Tracks() (.R file). 

Additional file 5. Step by step guide of using Gundog.Tracks (.R file) (to 
use in conjunction with below).

Additional file 6. Raw sensor and GPS data frame (.txt) of a penguin walk‑
ing out to sea from its nest.
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Glossary
Acceleration  The first derivative (rate of change) 

of an object’s velocity with respect to 
time. Units are expressed as metres per 
second squared (m/s2) or in G-forces 
(g). A single G-force on Earth (though 
this does vary slightly with elevation) 
is 9.81 m/s2. Tri-axial accelerometers 
measure acceleration in three orthogo-
nal planes (surge—‘anterior–posterior’, 
sway—‘medio-lateral’ and heave—
‘dorsal–ventral’). Under non-moving 
conditions, relative to gravity, the 
device tilt (pitch and roll) can be cal-
culated directly from raw accelerom-
etery values since they are composed 
entirely of the static force (gravity). 
Under linear acceleration, ‘moving’ 
forces applied to the device (e.g., due 
to the animal moving) are superim-
posed to static readings and as such 
measured animal acceleration is typi-
cally comprised of both a static and 
dynamic component.

Barometric    Pressure with the Earth’s atmosphere, 
pressure  that is a measure of force per unit 

area, often expressed as standard 
atmosphere (symbol: atm), defined as 
101,325 Pa (1013.25 mbar; 1 Pa = 1 N/
m2). The Earths mean sea-level atmos-
pheric pressure is approx. 1 atm. Baro-
metric pressure decreases with eleva-
tion and increases with depth.

Centripetal  Inertial force caused by circular 
acceleration   motion because an object is always 
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accelerating when either its direction 
or magnitude (speed) changes, and in 
circular motion, the direction changes 
instantaneously. This can cause the 
animal to ‘pull g’, such as at times of 
banking and cornering very fast.

Coordinate  In 3-D space, this is a set of three vectors 
frame   (x-, y-, z-axes) of unit length, perpen-

dicular (orthogonal) to each other.
Current flow (or ‘external’ current flow vectors).  
vectors   The heading and speed of tidal-/

air-currents.
Current  Adding current flow vec tors to dead- 
integration  reckoned travel vectors.
De-rotation  Within the tilt-compensated compass 

framework, this is the conversion of the 
magnetic vector values through multi-
plying by the transpose (inverse) of the 
pitch and then roll rotation matrices.

Distance  The 2-D Haversine distance ratio  
correction between successive Verified positions  
factor   (VPs) (used in the VP-correction pro-

cedure) and corresponding dead-reck-
oned positions. This is multiplied to all 
intermediate (between VPs) radial dis-
tance (q) values.

Drift   The accumulation of spatial errors 
relative to a Verified Position, arising 
from integrating incorrect dimensions 
of travel.

Dynamic  The dynamic component of acceleration, 
body which is typically induced by the limb 
acceleration and/or spine kinematics of the animal 
(DBA)  (and thus the attached accelerometer). 

Generally, more mechanical work (via 
muscular contraction), corresponds 
to higher metabolic rate and greater 
magnitudes in accelerometery read-
ings (dependent on tag deployment 
site). Typically, dynamic values from 
each multi-axial channel are integrated 
into an overall metric, such as ‘Overall 
Dynamic Body Acceleration’ [ODBA = 
│DBAx│ + │DBAy│ + │DBAz│] 
or ‘Vectorial Dynamic Body Accelera-
tion’ [VeDBA =  (DBAx2 +  DBAy2 +  D
BAz2)0.5]. Such derivatives have been 
demonstrated as useful proxies for 
movement-based power.

Earth-Centre,  This defines a non-inertial reference 
Earth-Fixed coordinate frame that rotates with 

(ECEF) system  the Earth (this is often simplified to 
‘Earth frame of reference’ or ‘Earths 
fixed frame’ in text). Its origin is fixed 
at the Earth’s centre (the x-axis points 
towards the intersection of the Earth’s 
Greenwich Meridian and equatorial 
plane, the y-axis pointing 90 degrees 
East of the x-axis and the z pointing 
north, along the Earth’s rotation axis). 
Note, this is different to the Earth-
Centred Inertial (ECI) system, which 
is non-rotating (and the x-axis instead 
always points towards the vernal 
equinox).

Equal pitch  The animal moves in the same direction   
assumption  and angle as its anterior–posterior axis 

(relative to North and the gravity vec-
tor, respectively).

Georeference  Within the dead-reckoning frame-
work this is another term used for 
carrying out VPC-dead-reckoning, 
or drift-correction or GPS-corrected 
dead-reckoning.

Gimbal lock  This is the loss of a degree of freedom 
in 3-D, when two axes become paral-
lel to each other (locked in the same 
attitude, reflecting the same rotation). 
For example if the anterior–posterior 
axis (‘surge’ or ‘forward-back’—x-axis 
for NED coordinate frames) points in 
the plane of the gravity vector (pitched 
90 degrees up or down), then the dor-
sal–ventral (‘heave’ or ‘up-down—
z-axis for NED coordinate frames) and 
the medio-lateral axis (‘sway’ or ‘side-
to-side’—y-axis for NED coordinate 
frames) become parallel to each other, 
and changes about the yaw can no 
longer be compensated for [changes 
in the roll (or ‘bank’) is equivalent to 
changing the heading].

GPS-derived The Haversine distance calculated 
speed   between successive GPS coordinates, 

divided by the time taken between 
locations.

Ground-  Empirical evidence (often information  
truthing   obtained by direct observation), as 

opposed to inference for validating 
something under investigation. Within 
the dead-reckoning framework, VPs 
such as GPS locations are used to 
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periodically ground-truth an animal’s 
position.

Haversine Computes the great-circular distance 
formula   (units in metres) between two loca-

tions (using their longitude and lati-
tude coordinates) on a sphere, apply-
ing trigonometry to map a triangle to 
the surface of a unit sphere. This for-
mula is only an approximation because 
the Earth is not a perfect sphere, with 
numerical errors also arising at the 
antipodal regions.

Heading   The difference of heading (or ‘bearing’) 
correction factor  from true North between consecutive 

VPs (used in the VPC procedure) and 
temporally aligned dead-reckoned posi-
tions. This is summed to all intermedi-
ate (between VPs) heading (h) values.

Inf   Results from numerical calculations 
which are mathematically infinite (e.g., 
in R, dividing any value by zero results 
in Inf ).

Linear drift  At each path segment, the dead-reck- 
correction oned path is shifted to the position of  
method   the first VP encounter using a shift 

vector. A correction vector then adds 
the difference between the VP and 
estimated dead-reckoned end points 
linearly over this path segment period.

Multiplicative  
 (m)-coefficient  Within the dead-reckoning frame-

work, this refers to the gradient of a 
linear regression, e.g., [speed =  (Ve 
DBA ·m) + c], where m is the multi-
plicative factor of VeDBA and c is the 
subsequently summed constant value 
(reflecting the y-intercept).

NaN   Non-numeric (un-defined) values (e.g., 
in R, diving zero by zero results in 
NaN).

Net error   Here, net error reflects the 2-D Haver-
sine distance (units in metres) between 
VPs and temporally aligned dead-reck-
oned positions.

Non-movement  Behaviour performed while stationary, 
behaviours  whereby the animal may be moving, 

e.g., feeding on the spot, but there is 
no locomotion (not moving to a differ-
ent position in 3-D space).

North–East–  Often used in flight mechanics,  
Down (NED)  this defines a non-inertial 3-D coordinate 

system   frame, the origin affixed as the devices 
centre of gravity and its axes oriented 
along the geodetic directions defined 
by the Earth surface (the x- and y-axis 
pointing true north and East, respec-
tively, parallel to the geoid surface 
and the z-axis pointing downwards 
towards the Earth’s surface).

Pitch  The angle of device’s anterior–poste-
rior inclination or declination, relative 
to the horizontal plane of the Earth’s 
surface. Pitch is often expressed as an 
Euler angle, which describe the atti-
tude and rotations of a device via a 
given Euler angle sequence (yaw, pitch 
and roll) of rotations (using rotation 
matrices). Pitch can be derived from 
the static component of accelera-
tion. Assuming an NED system, pitch 
defines the degree of rotation about 
the y-axis.

Radial Within the dead-reckoning framework,  
distance (q)  this refers to a progression distance 

accounting for the approximate cur-
vature of the Earth (longlat projection 
approximating the geoid to a sphere; 
radius (R) = 6,378,137 m).

Right-handed  The direction in which the  
coordinates/ fingers curl when pointing the right  
rotations   thumb along the positive direction 

(+ 1 g) of the z-axis (e.g., down for 
NED coordinates), reflect the direction 
of rotation to be applied about each 
axis (for a given Euler angle sequence), 
with the index finger representing the 
x-axis and the middle finger repre-
senting the y-axis, respectively, when 
splayed out at right angles to the 
thumb.

Roll   The angle of rotation about the device’s 
anterior–posterior axis. Roll is often 
expressed as an Euler angle, which 
describe the attitude and rotations of a 
device via a given Euler angle sequence 
(yaw, pitch and roll) of rotations (using 
rotation matrices). Roll is thus derived 
after rotating by yaw and pitch and can 
be derived from the static component 
of acceleration. Assuming an NED sys-
tem, roll defines the degree of rotation 
about the x-axis (also termed ‘bank 
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angle’).
Static body  The static component of  
acceleration acceleration, due to gravity. Apart  
(SBA)   from being used to calculate the angle 

of device tilt, increased inertial (cen-
tripetal) acceleration, e.g., when the 
animal ‘pulls g’, can be captured more 
fully with static measures (rather than 
DBA estimates), and analogous to 
VeDBA, the computation of the Vec-
torial Static Body Acceleration [VeSB
A =  (SBAx2 +  SBAy2 +  SBAz2)0.5] has 
been considered as a proxy of power.

Tilt-compensated The compass heading compass 
method   (estimated using the arctangent ratio 

between two orthogonal components 
of the magnetic vector) is only accu-
rate if the magnetometer outputs [typi-
cally x, y channels—assuming the NED 
coordinate system is used (Additional 
file  1: Text S2)] are taken when the 
compass is level. Assuming the accel-
erometer-magnetometer approach, 
static acceleration measures are used 
to calculate the angles between the 
tag’s gravity (and thus magnetic) vec-
tor and the Earths frame of reference 
(e.g., Earth-Centered, Earth-Fixed 
(ECEF) coordinate system). These 
angles are typically expressed as pitch 
and roll Euler angles which are used to 
compensate for variations in the mag-
netometer output due to device tilt. 
The tilt-compensated compass method 
covers the procedures of adjusting the 
coordinate frame of the device to cor-
respond with a level inclination and 
subsequently compute the compass 
heading from the adjusted magnetom-
etry values.

Tortuosity  The straight-line distance between 
the start and end positions of a given 
path segment, divided by the sum of 
the consecutive intermediate indi-
vidual distance steps that constituted 
the total path segment’s length. Values 
closer to 0 (or conversely values closer 
to 1 if subtracting the resultant ‘tortu-
osity’ value from 1) reflect more twists 
and turns in the movement path.

Vector  Adding vectors (of travel)  

 integration  together. Assuming Cartesian coor-
dinates, vector addition is performed 
by adding the corresponding com-
ponents of the vectors together. E.g., 
[A+ B = (a1 + b1, a2 + b2, . . . , an + bn)].

Vertical speed  Distance travelled vertically up (at alti-
tude) or down (at depth) divided by 
the time period between values.

World Geodetic  The typical model of the System 1984 
(WGS-84)   Earth’s shape (standard for maps and 

satellite navigation), defining a coor-
dinate system that accounts for the 
oblate spheroid.

Yaw   The orientation of the device, gen-
erally, with respect to true North 
(assuming any required magnetic dec-
lination offset has been applied). Yaw, 
also termed ‘heading’ or ‘bearing’, is 
often expressed as an Euler angle, 
which describe the attitude and rota-
tions of a device via a given Euler angle 
sequence (yaw, pitch and roll) of rota-
tions (using rotation matrices). Yaw 
can be derived from the static com-
ponent of acceleration. Assuming an 
NED system, yaw defines the degree of 
rotation about the z-axis. Yaw requires 
the tilt-compensated compass method 
to compute.
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