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Influence of thermal stratification 
and storms on acoustic telemetry detection 
efficiency: a year-long test in the US Southern 
Mid-Atlantic Bight
Michael H. P. O’Brien*  and David H. Secor

Abstract 

Background: The detection efficiency of ultrasonic transmitters is seasonally variable, requiring long-term studies to 
evaluate key environmental features that mask, alter speed, bend, or reflect transmissions. The US Southern Mid-Atlan-
tic Bight shelf is characterized by a strong summer thermocline capping remnant winter water, known as the Cold 
Pool, and a well-mixed water column in other seasons. To investigate the effects of interactions between temperature 
stratification and storm-induced noise on transmission detectability, we conducted a year-long range test of 69-kHz 
acoustic transmitters in the bottom waters of the US Southern Mid-Atlantic Bight. We used generalized additive mod-
els and cross-validation to develop and evaluate a predictive model of detection efficiency and visualize variability in 
detection distance throughout the year of deployment.

Results: The most-predictive model contained the effects of temperature stratification and ambient noise, predicting 
that stratification results in a 33% increase in detectability and 56% increase in detection distance. The model had an 
overall error rate of 17.1% and an 18.7% error at a distance of 800 m, predicting 17% detectability at median ambi-
ent noise when the water column was not stratified and > 50% when the difference between surface and bottom 
temperatures was greater than 4.2 °C. The distance at 50% detectability increased with the formation of the Cold Pool 
during spring, increasing by nearly 300 m over 3 days. All seasons were associated with storm-induced reductions in 
overall detectability and distance at 50% detectability.

Conclusion: Thermal stratification within the Southern Mid-Atlantic Bight increases bottom water ultrasonic trans-
mitter detection distance and reduces the impact of surface noise. This effect leads to a seasonal increase in detection 
distance from the late-spring through the summer. To our knowledge, this study is the first to report and quantify an 
increase in detection range as a result of temperature stratification, likely due to placing transmitters and receivers on 
the same side of a strong thermocline.

Keywords: Acoustic telemetry, Range testing, Detection efficieny, US mid-Atlantic Bight, Cold Pool, Telemetry array, 
Thermal stratification
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Background
As the prevalence of biotelemetry in long-term moni-
toring of fish migration and habitat use increases, so too 
should the evaluation of temporally varying detection 
probability. Due to the large variation in sound produc-
tion and attenuation across environments, understanding 
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of detection ranges is necessary to correctly interpret 
acoustic telemetry data [1]. The detection probability of 
ultrasonic transmitters utilized in acoustic biotelemetry, 
hereafter referred to as detectability, varies with seasonal 
and event-scale physical changes in the environment 
[2]; still, many studies do not address temporal changes 
in detection probability and assume a constant value 
or apply previously calculated values to different types 
of environments [1, 3]. In gated and gridded designs of 
receivers, changes in detection probability can alterna-
tively occlude or exaggerate assessed presence of telem-
etered animals if detection ranges are not adequately 
known [4]. Indeed, there has been an increase in studies 
incorporating long-term range testing to either directly 
scale results [5] or to inform detection range due to local 
features [6, 7].

Acoustic transmitters produce coded ultrasonic signals 
that are detected and logged by receivers placed in loca-
tions selected to encounter the target organism. Ultra-
sonic transmission distance is variable and dependent on 
initial transmission strength and the physical properties 
of the water column [8]. At a given distance and trans-
mission strength, detectability is a function of signal loss 
due to spreading and sound attenuation in water. The 
speed of sound in seawater, and thus the propensity for 
detection, increases with increasing temperature, salin-
ity, and depth [9], though, in shallow-water acoustics, 
depth is often ignored in favor of the dominant effects of 
temperature and salinity [10]. Additionally, summer tem-
perature effects dominate over salinity impacts in marine 
shelf environments due to the comparatively larger tem-
perature range.

Inherent physical and biological processes within the 
area of investigation can create masking noise, sound 
reflection, or sound absorption at or near the tag’s 
transmission frequency, reducing the detectability of a 
transmission signal above the ambient sound regime. In 
shallow water, signal and noise can reflect off the sur-
face and bottom boundaries multiple times, with differ-
ential absorption occurring with each bottom contact 
[11]. Periods of rain, wind, waves [8], and boating traffic 
[12] produce cavitation, the collapse of which emits dif-
fuse ultrasonic noise from the surface. Near the bottom, 
organisms such as snapping shrimp [13] produce further 
ultrasonic noise. Internal boundaries, like multilaminar 
flow [14], internal waves [11], local fronts [10], and strati-
fication [15] variably reflect, attenuate, or increase both 
signal and noise propagation through the water column 
according to their strength and origin.

To evaluate both seasonal- and event-scale changes 
in detection range within a key migration corridor for 
elasmobranchs, fishes, and turtles (inner and mid-shelf 
waters < 50  m depth) [16, 17], we evaluated telemetry 

detection ranges over a 12-month period in a dynamic 
shallow shelf system: the Southern Mid-Atlantic Bight 
(SMAB). The SMAB is well-mixed in winter months via 
increased wind stress and by buoyancy differences aris-
ing from cold surface water overlying warmer, saline bot-
tom water fed by the Gulf Stream and continental slope 
[18]. A seasonal thermocline, fueled by a combination 
of advection of bottom water from higher latitudes and 
surface heating [19], overwhelms salinity-driven mixing 
and forms in mid- to late-April, strengthening through 
the summer months. This cold bottom water, known as 
the Mid-Atlantic Cold Pool, persists in the shelf waters of 
the SMAB into late-summer when it is rapidly destroyed 
through surface mixing via tropical storms, offshore 
advection, and reduced thermal input [20–22]. After 
destruction of the Cold Pool, buoyancy-driven mixing 
once again becomes the dominant thermohaline process 
and lasts through the winter.

At two sites representing common nearshore (17  m) 
and mid-shelf (28  m) conditions at the western edge 
of the SMAB Cold Pool, we conducted a near-bottom 
12-month range test for 69-kHz transmissions (Fig.  1). 
This period was interspersed with multiple wind 
events and over a complete cycle of Cold Pool forma-
tion, destruction, and winter mixing. At each site, three 
receivers (VR2AR, VEMCO Ltd) were placed at 0, 250, 
and 800  m distances to represent the range of a pri-
ori-assumed detection distances [5]. We modeled the 
response of receiver detectability to ambient noise at 
69 kHz during periods of strong and weak thermal strati-
fication produced by the Cold Pool lifecycle. As the Cold 
Pool introduces a density boundary that is likely to affect 
the propagation of sound, we hypothesize that thermal 
stratification associated with Cold Pool presence will 
have a greater effect on detectability than considering 
temperature or ambient noise, alone.

Results
Mid‑Atlantic cold pool
The study area remained well-mixed (ΔT ≈ 0) from 
December 19, 2017 until mid-April 2018; thereafter ver-
nal heating and a reduction in high-wind events resulted 
in a gradual rise in thermal stratification and subsequent 
Cold Pool formation in nearshore and mid-shelf waters 
(Fig. 2). The Cold Pool became fully formed in early May, 
with a period of rapid stratification of 1.1  °C ΔT  day−1 
occurring from May 2 through May 5. After the onset 
of stratification, ΔT ranged from 0.8—12.9  °C at the 
nearshore site and 1.7—17.4 °C at the mid-shelf site until 
the Cold Pool rapidly collapsed from September 7–10; 
stronger thermal stratification consistently occurred at 
the deeper mid-shelf site as compared to the nearshore 
site. Acute periods of partial-to-complete destratification 
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Fig. 1 Map of study sites and diagram of experimental array offshore of Maryland, USA with 10-m depth contours. Circles denote receiver locations 
of the mid-shelf (blue) and nearshore (orange) sites; the triangle denotes the location of recorded wind speeds. Inset shows the study location in 
reference to the U.S. mid-Atlantic coast

Fig. 2 Observed water temperature (surface: dashed line; and bottom: solid line), ΔT, and ambient noise in the nearshore (orange) and mid-shelf 
(blue) sites. Yellow line demarcates noise levels above which detection range is likely to be reduced (300 mV, [24]). Rug denotes periods of winds 
greater than 6 (short line) and 8 (tall line) on the Beaufort Wind Scale (> 10.7 m/s and > 17.2 m/s, respectively)
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of nearshore waters are often associated with large wind 
events or tropical storms [23], and were observed on May 
16–19, June 2–4, July 5–9, and August 19–24, 2018 where 
ΔT decreased by 3.5–8.7 °C ΔT over the course of several 
hours to several days.

Spikes in noise (measured as mV at 69  kHz) often 
co-occurred with high-wind storm events, including 
a period of five nor’easters in the months of March and 
April, a summer nor’easter on July 21, and an unnamed, 
late-summer wind event that resulted in the ultimate 
destratification of the water column in early September 
(Fig. 2). During the period of Cold Pool presence, ambi-
ent noise at 69  kHz was significantly lower (ANOVA: 
p < 0.001), and contained significantly fewer days in 
which transmissions were likely to be masked (> 300 mV, 
[24, 25]; Chi-square test: p < 0.001). This may also be 
attributed to a co-occurring reduction in storm activity 
rather than the presence of the Cold Pool, itself (Fig. 2).

Observed and modeled detectability
Observed detectability decreased with increasing dis-
tance from source, with detectability of 97.2 ± 1.4% 
at 250  m, 73.4 ± 22.0% at 550  m, and 18.1 ± 18.1% at 
800  m (median ± median absolute deviation). Detect-
ability at distance varied between arrays, with median 
detectability of 95.8 ± 2.8% and 97.9 ± 1.4% at 250  m; 
59.0 ± 33.4% and 81.8 ± 14.7% at 550 m; and 15.2 ± 15.2% 
and 23.1 ± 23.1% at 800 m in the nearshore and mid-shelf 
arrays, respectively.

The best-performing model of detectability contained 
the main effects of noise at 69  kHz and the ΔT index 
of stratification; the model that included their interac-
tion performed similarly in terms of predictive strength 
(root-mean-square error; Table  1) still, this model was 
not selected according to Akaike Information Criterion 
(AIC). Both models were 11% more accurate in predict-
ing detection frequency than considering distance alone 
(Table  1; the null model), and 4% more accurate than 
only considering noise. Models that included an index 
of temperature stratification performed 2% better than 
those that only considered bottom water temperature. 
Prediction performance lessened at the 550 and 800  m 
distances for all models, with the best model predicting 
13–15% and 3–7% more-accurately than the distance-
only and distance–noise models, respectively.

The lowest detection probabilities at 800 m and a given 
value of ambient noise occurred when there was little-
to-no temperature stratification (ΔT ≤ 0  °C; Fig.  3a, b). 
Detectability increased linearly as temperature strati-
fication increased from 1.5 to 3.5  °C ΔT, after which it 
began to level off and remained at relatively constant at 
values of ΔT > 4.2 °C. Site-specific estimates of detectabil-
ity under median noise conditions significantly exceeded 

those under well-mixed conditions. When stratifica-
tion exceeded 1.6  °C ΔT, detectability was: nearshore, 
11.2% [8 – 15.5%] @ 0 °C ΔT and 21.5% [15.9–28.4%] @ 
1.6 °C ΔT; mid-shelf, 20.9% [15.6–27.4%] @ 0 °C ΔT and 
36.3% [27.9–45.6%] @ 1.6  °C ΔT. Predicted detectability 
reached a maximum at 10.6  °C ΔT, resulting in a global 
estimate of 58.5% [95% confidence interval: 27.5—83.9%] 
and 28.0% detectability [10.0–57.8%] under median and 
loud noise conditions, respectively. Global estimates of 
detectability under stratified conditions were not sig-
nificantly greater than those estimated under destratified 
conditions, though this is likely over-conservative due to 
the high uncertainty associated with parameterizing a 
random effect with only two levels [26].

The marginal response of predicted detectability at 
800  m to noise was “hockey-stick” shaped under both 
stratified (Fig.  3c) and destratified (Fig.  3d) conditions. 
Detectability exhibited a rapid decrease to low levels 
with increasing noise up to 300  mV in stratified condi-
tions (− 0.45%  mV−1) and 250 mV in unstratified condi-
tions (− 0.39%  mV−1), followed by a less-rapid decrease 
with increasing noise thereafter (− 0.06%  mV−1; − 0.01% 
 mV−1). Site-specific estimates of detectability at 300 mV 
were significantly greater under stratified conditions 
at both the nearshore (stratified: 17.9% [11.4–26.9%]; 
unstratified: 3.8% [2.4–5.9%]) and mid-shelf sites (31.2% 
[20.5–44.4%]; 7.6% [4.9–11.5%]).

D50 description/cycles
Modeled distance at 50% detectability  (D50) varied 
seasonally and was nominally greater mid-shelf than 
nearshore during both Cold-Pool-present and Cold-
Pool-absent periods, ranging from 147 to 990  m and 
from 148 to 953 m, respectively (Fig. 4).  D50 was variable 
within-season, driven by reductions up to 800 m associ-
ated with noise from identified storms (see Mid-Atlantic 
Cold Pool, above). Substantial increases were not appar-
ent after receiver tending on April 11 and August 8–9, 
2018 (Fig. 4), suggesting that biofouling did not function-
ally affect  D50.

Change point analysis identified two transitions at 
both the nearshore and mid-shelf sites. The first change 
point occurred on April 28, 2018 [95% credible inter-
val: April 26–May 1] at the deeper mid-shelf site and on 
May 1 [April 29–May 5] at the more-shallow nearshore 
site; the second occurred on Sept 8 [Sept 7—Sept 9] at 
the nearshore site and Sept 9 [Sept 8–Sept 9] at the mid-
shelf site (Fig. 4). Estimated change points closely corre-
sponded to the creation and destruction of the Cold Pool 
on May 2–5 and September 7, 2018.  D50 increased from 
609 ± 128  m to 840 ± 92  m (mean ± standard deviation) 
and 592 ± 116 m to 895 ± 71 m at the first change point 
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in the nearshore and mid-shelf sites, respectively, then 
decreased to 524 ± 96 and 589 ± 86 m after the second.

The first change point was preceded by a 7-day average 
ΔT of 2.0 °C, with the second change point being followed 
by a 2.2  °C ΔT 7-day average. A value of 2.0  °C ΔT was 
consistent with observed values demarcating the creation 
of the Cold Pool (Fig.  2) and increases in detectability 
suggested in the model results (Fig.  3). Mean tempera-
ture stratification and ambient noise differed between 
the three periods demarcated by change points, shifting 
from 0.2 ± 0.6 to 8.0 ± 4.3 °C ΔT, then back to 0.2 ± 1.4 °C 
ΔT; and from 273.2 ± 110.6 to 226.1 ± 41.7  mV, then to 
293.6 ± 98.9 mV, respectively.

Discussion
Stratification and detection range
Through modeling the proportion of transmissions 
received per day at four different distances, ambient 
ultrasonic noise and temperature stratification emerged 

as the dominant variables controlling detectability at a 
given distance. Within this shelf environment, represent-
ative of the larger US Mid-Atlantic Bight, temperature 
stratification appeared as influential as noise, with the 
best model selecting both effects. The Mid-Atlantic Bight 
is typified by strong seasonality in temperature stratifica-
tion and wind-driven noise events, and daily detection 
efficiencies were driven by their joint dynamics.

The best model predictions were within 19% of 
observed values at 800  m, resulting in a window of 
30–70% detectability when the true frequency of detec-
tion is 50%. Although the model closely explained 
detectability during Cold-Pool-absent periods, the most 
unexplained variance occurred during Cold-Pool-pre-
sent periods, suggesting that the interaction between 
noise and temperature stratification is unstable or that 
further terms could explain detection probability during 
times of temperature stratification. Detectability > 90% at 
800  m was apparent during Cold-Pool-present periods, 

Fig. 3 Predicted detectability at a distance of 800 m as a function of ΔT or ambient noise at the nearshore (white/orange) and mid-shelf (white/
blue) sites, and with the effect of site removed (black/gray). Envelopes indicate 95% confidence intervals. Panels show scenarios of a the effect of ΔT 
at median levels of ambient noise (c. 220 mV); b the effect of ΔT at a masking level of ambient noise (300 mV); c the effect of ambient noise under 
moderate stratification (ΔT = 5 °C); and d the effect of ambient noise under no stratification (ΔT = 0 °C). Rugs denote the distribution of observations 
within 1 °C (a, b) or 10 mV (c, d) of the given scenario
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occurring in 3.4 and 33.5% of days in the nearshore and 
mid-shelf sites, respectively. As a result, the model is 
likely unable to accurately predict detectability at greater 
distances—an effect of this can be seen in the model-
imposed upper limit of  D50 near ~ 1250  m during the 
period of Cold Pool presence. An improved design would 
include test distances centered on either side of the 
expected D50, as well as one beyond the range limit [27].

Temperature stratification has been reported to 
decrease [2, 28–30] or cause little-to-no change [25, 31, 
32] in the detectability of acoustic telemetry transmis-
sions; however, thermoclines on the SMAB shelf are 

much stronger and shallower than those reported in 
other detection range studies that incorporated the effect 
of temperature stratification (Table  2). In an analysis of 
detection probability conducted in the same area of the 
SMAB, Oliver et  al. [32] found density stratification to 
have a significant negative effect on detection distance. 
However, this played a minor role in detectability as 
compared to other variables related to noise generation 
and stratification was only present for 24% of their study 
period, leading the authors to suggest that further explo-
ration is needed. Klinard et al. [2], who used the ΔT index 
of stratification utilized in the present study, reported 

Fig. 4 Modeled daily distance at 50% detectability  (D50, lines) at mean values of noise and ΔT observed in the mid-shelf and nearshore sites. 95% 
confidence intervals are indicated by the shaded areas. Red lines show the posterior distribution of the estimated  D50 change points. Rug denotes 
periods of winds greater than 6 (short black lines) and 8 (tall black lines) on the Beaufort Wind Scale (> 10.7 m/s and > 17.2 m/s, respectively), as well 
as dates in which receiver tending occurred (dashed red lines)

Table 2 Reported influence of a thermocline on detectability. Gradient, depth, and respective placement of transmitters 
and receivers across the thermocline were reported or calculated from reference figures

Reference System Thermocline

Gradient (°C/m) Depth (m) Transmitter–
receiver side

Effect 
on detectability

Present study Southern Mid-Atlantic Bight, USA 1–2 8–15 Same (below)  + 

Oliver et al. [32] Southern Mid-Atlantic Bight, USA 15–20 Mix −
Jossart et al. [30] Caribbean, USVI 0.2 30–40 Within −
Singh et al. [33] Kromme Bay, South Africa 1 12–14 Mix −
Huveneers et al. [29] New South Wales, Australia 0.44  > 20 Mix −
Cagua et al. [34] Red Sea, Saudi Arabia  > 0.04  < 37 Mix −
Gjelland and Hedger [31] Lake Skrukkebukta, Norway 10–21 Opposite −
Klinard et al. [2] Lake Ontario  > 0.08 11 Mix −
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that temperature stratification played a minimal-to-
negative role in detection distance within their array. 
The authors note that the array was not deployed during 
high-stratification months and that further investigation 
could show otherwise.

Studies that report a negative effect of thermocline 
presence often have transmitters or receivers within, or 
on different sides of, the thermocline. In these instances, 
detection requires signal transmission across a steep 
change in density, which can result in acoustic power loss 
[15]. In a study by Huveneers et al. [29], a transmitter was 
placed at mid-depth, with a suite of receivers suspended 
in the water column. Inspection of the partial effects of 
their model reveals that although a significant negative 
trend is apparent, there were instances when a significant 
positive effect can be noted—namely when the thermo-
cline was shallow, placing transmitters and receivers far 
from a rapid change in density. This is not always the case 
however, as Singh et al. [33] explicitly investigated detect-
ability on the same side of the thermocline, and found 
a negative effect. Further, Loher et  al. [7] also observed 
rapid increases in detection probability attributed to 
destratification. In the present study, transmissions did 
not have to cross the thermocline as both transmitters 
and receivers were positioned near the sea bottom. As it 
is clear that detection probability is much reduced when 
crossing the thermocline, this study is likely more appli-
cable to demersal species that spend the majority of time 
below the thermocline, such as Atlantic sturgeon, Atlan-
tic cod, or black sea bass, than pelagic species, such as 
striped bass.

Though attributed to storms here, reduction in detect-
ability could be attributed to other masking factors such 
as an increased presence of boat traffic or tagged fish. 
Increased summer boating and commercial shipping 
activity has been shown to substantially increase sonic 
noise within the SMAB (10–800 Hz, [35]) to the degree 
that it can mask bioacoustic communication [36]. Ship-
ping and boating traffic create noise dominating frequen-
cies up to 40  kHz, and can span to 100  kHz range and 
overlap with 69 kHz transmitters [12, 37]. The nearshore 
site investigated here, particularly, is exposed to high lev-
els of recreational boating traffic in the summer months 
[38]. However, Hildebrand [37] also notes that thermal 
noise is the dominant noise source above 60 kHz. Indeed, 
although there was increased shipping that could create 
transmission-masking noise, we recorded a decrease in 
masking ambient noise at 69  kHz in the stratified sum-
mer months.

The presence of fish tagged with 69-kHz transmitters 
could also result in reduced detection probability due to 
code collision [6]. At the investigated sites, the most com-
mon tagged species were Atlantic sturgeon and striped 

bass (n > 600), which were present from October through 
January and late-March through June [39]. As October–
January overlaps with a period of Cold Pool absence, a 
greater number of transmitting individuals in the area 
could have biased this period toward the comparatively 
low detectability reported in this study. The late-March–
June period of transmitter presence, which includes the 
period of Cold Pool formation should also exhibit a low 
bias if code collision had a large effect. However, a bias 
toward low detectability during this period is not appar-
ent—indeed, a change point toward increased detectabil-
ity occurred in early May.

The distance when transmissions have an effectively 
random chance of detection, estimated as  D50, is a com-
mon metric to investigate detection range.  D50 is intuitive 
when conceptualizing logistic acoustic power loss due to 
spreading over distance and simple to extract from non-
linear least squares [29], LOESS smoothing [40], gener-
alized linear [41], and generalized additive models [42]. 
It also provides an answer to the question most inves-
tigators actually want answered: how far away could I 
have reliably heard this transmitter?  D50 is often lower 
in marine than freshwater systems, ranging from 100–
800 m in marine systems and exceeding 1000 m in fresh-
water [2, 6]. In marine systems, most reported range tests 
have been conducted in subtropical reef systems, where 
stratification is not as extreme and topology and biogenic 
ultrasonic noise are much more influential [43];  D50 in 
these systems is frequently less than 400 m.  D50 in tem-
perate marine systems, however, has been less-frequently 
investigated. In deep water systems off the Pacific coast 
of Alaska, Loher et  al. [7] measured  D50 greater than 
1200 m. On a shallow shelf system off the Atlantic coast 
of Georgia, Mathies et al. [14] attained  D50 greater than 
280 m. Here, we report values for the shallow shelf of the 
Mid-Atlantic Bight straddling those reported in temper-
ate climates, ranging from 0 to 1100  m with means of 
580 m during non-stratified and 860 m during stratified 
periods. As transmitters were not implanted,  D50 values 
reported in this study are likely over-estimated for stud-
ies utilizing surgically implanted transmitters [44]; results 
are most applicable to externally tagged fish or receiver 
arrays, themselves.

The exact relationship between ultrasonic sound prop-
agation and an increase in detectability associated with 
temperature stratification is beyond the scope of this 
study, but likely lies within optic theory’s Snell’s Law [45]. 
As transmissions within a cold bottom layer propagate 
toward the surface, they come in contact with a rapid 
decrease in density associated with the thermocline. 
Using seasonal salinity differences [46] and observed 
temperatures, this corresponds to an increase in the 
speed of sound ranging from 4 to 6 m/s at the  D50 change 
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point (2  °C ΔT) to 69  m/s at the maximum recorded 
value of ΔT in this study (17.4  °C ΔT) [47]. The transi-
tion from comparatively slower sound speed in the bot-
tom layer to fast sound speed in the surface layer bends 
transmission rays back toward the bottom, and it is likely 
that some rays at shallow angles of incidence would be 
reflected back to the bottom layer. As there was minimal 
change in detectability beyond 4.2 °C ΔT at a given dis-
tance and noise level, there may be no functional effect of 
the strength stratification beyond this point, correspond-
ing to a difference in the speed of sound greater than 
14 m/s.

Conclusion
Temperature stratification within the US SMAB cor-
responded with > 33% increased detectability in bottom 
waters. Within this system, thermocline strength varied 
on an hourly to daily basis, resulting in highly variable 
detection ranges throughout the year studied. Flexible 
generalized linear or additive modeling can allow this 
variability to be incorporated into ecological or spe-
cies distribution models to scale the number of records 
recorded through time [5]. Seeding telemetry arrays 
with long-term sync tags at assumed distances near 50% 
and 0% detection frequency could calibrate the modeled 
transmission distance. To our knowledge, this study is 
the first to report and quantify an increase in detection 
range due to the onset of stratification, underlining that 
the detectability of underwater acoustic transmitters is 
unique to the time and location in which it is measured.

Methods
Both study sites had bottom types characteristic of the 
SMAB, with a relatively flat seabed dominated by sand 
and silt (> 90%; [48, 49]), and were at depth representative 
of a migration corridor used by elasmobranchs, fishes, 
and turtles [39]. At each site, three receivers (VEMCO 
Ltd, VR2AR) were deployed—one each at 0, 250, and 
800 m distances (Fig. 1). Each receiver was anchored by 
two 20.5-kg lead plates and suspended 1  m above the 
seafloor by a 25-cm hard trawl float. Transmitters inter-
nal to the receivers were set to transmit randomly every 
9–11 min at the highest power (160 dB re 1 μPa @ 1 m) 
to mimic Vemco V16-xH transmitters (158–162  dB re 
1 μPa @ 1 m), the most commonly deployed tag in ani-
mals transiting the SMAB [50]. On average, each receiver 
transmitted 6 times every hour, resulting in 18 recordable 
transmissions at 0  m and 12 recordable transmissions 
at 250, 550, and 800 m, respectively. Due to an error in 
deployment, one transmitter at the mid-shelf site was 
not activated between April and August; as a result, half 
the daily replicates for the 250 and 500  m distances at 
the mid-shelf site were recorded during that period. The 

total number of transmissions and detection successes 
were summed for each receiver–distance–day combina-
tion. We did not account for code collision in this study; 
we assumed the effect of code collision was negligible as 
the range of daily recorded transmissions (136–150) was 
within the range of possible daily transmissions given 
the random transmission rate (130–160). In addition to 
immediately logging transmissions, receivers were set 
to record instantaneous measurements of bottom water 
temperature (BWT; °C) and noise (69  kHz, mV) every 
hour. BWT and noise were aggregated to the daily level 
by taking the mean for each day. Arrays were deployed on 
December 19, 2017, and tended April 11 and August 8–9, 
2018 via acoustic release and immediate replacement of 
a new receiver. All arrays were recovered on December 
4, 2018.

Receiver-reported noise values in millivolts are not 
calibrated to a system sensitivity, and so average noise 
reported by the receivers cannot be directly and reliably 
converted to decibels. However, the provided noise in 
millivolts offers a self-referential metric of ambient noise 
at 69  kHz, wherein ambient noise levels above 300  mV 
are often sufficient to mask tag transmissions [24].

As Cold Pool presence in the SMAB can be broadly 
represented by large differences between surface and bot-
tom water temperatures [19, 20], we utilized the differ-
ence between satellite-derived sea surface temperature 
and in situ receiver-recorded bottom water temperature 
as an index of temperature stratification associated with 
the Cold Pool. In addition to the SMAB, this metric, ΔT, 
has previously been used as an index of thermal stratifica-
tion in other systems [2, 51]. Multi-scale ultra-high reso-
lution sea surface temperature data [52], containing daily 
sea surface temperature at 0.01° resolution (~ 1  km2), 
were downloaded for the deployed time period from the 
CoastWatch West Coast Regional Node ERDDAP server 
[53]. The difference between satellite-observed sea sur-
face temperature and observed daily mean bottom tem-
perature in each array was summarized as ΔT. Higher 
absolute values of ΔT represent a more-stratified water 
column, while lower values represent uniformity; higher 
positive values of ΔT indicate Cold Pool presence and 
strength.

To investigate Cold Pool influence on detectability in 
the SMAB, daily detection success was modeled as a func-
tion of distance with various combinations of additive 
functions for ΔT or BWT, noise, and their interactions 
using a binomial generalized additive model (GAM) with 
logit link function and AR1 errors (Table 3). Distance was 
included in all models as logistic loss in acoustic power due 
to spherical or cylindrical spreading was assumed. BWT 
and ΔT were alternately included in the model to inves-
tigate whether water column temperature stratification 
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better-explained variation in detection range than near-
receiver temperature, alone. A random intercept of receiver 
was included to account for possible variability in ultra-
sonic soundscapes between receiver location; the addi-
tive functions of BWT, ΔT, and noise were allowed to vary 
randomly by site around a global smooth. Model form was 
evaluated though inspection of residuals for correlation 
and non-normality; as residuals of the global model exhib-
ited temporal autocorrelation, models were constructed 
with an AR1 error (ρ = 0.50).

Each receiver was assumed to detect itself 100% of the 
time; the recorded number of self-transmissions was used 
to calculate the proportion of detections received but not 
used in fitting the model. The best model was selected as 
that with lowest AIC. Model performance was evaluated 
using the RMSE of 5 repetitions of fivefold cross-valida-
tion. In this procedure, the data are randomly split into 5 
subsets, or folds; 4 folds are used to fit the model, and the 
remaining fold is used to evaluate the deviance between 
predicted and observed values. This is repeated 5 times, 
using each fold in turn as a testing data. To provide a con-
servative estimate of model performance, the model was 
made more general by removing the influence of random 
effects after fitting, but before testing, the model during 
the cross-validation process. Model visualizations were 
conducted in reference to a distance of 800 m, the farthest 
distance in the array with recorded detections. All GAMs 
were fit using the mgcv package (version 1.8.31, [54]) in R 
(version 4.0.2, [55]).

To visualize variability in detection range through time, 
the best model was used to predict each day’s distance at 
50% detectability  (D50, [29]). Daily  D50 was estimated from 
the parameterized model:

logit(0.5) = β0 + β1D50,day + β2Receiver +

N∑

n=1

fn(xn,day,site)

D50,day =
−[β0 + β2Receiver +

∑N
n=1 fn(xn,day,site)]

β1
,

where β0 is the intercept, β1 is the coefficient of the lin-
ear effect of distance, β2 is the coefficient for the random 
effect of receiver, and 

∑N
n=1 fn(xn,day,site) is the sum of the 

N  additive effects chosen in the model selection process, 
evaluated for each site at the daily observed value of the 
corresponding predictor, xn . Pointwise 95% confidence 
intervals for estimated  D50 were calculated by simulation 
of the posterior distribution of the parameters. The num-
ber of change points in mean and variance of the result-
ing  D50 time series were detected using the changepoint 
package in R (version 2.3.1, [56]) using the PELT algo-
rithm and CROPS penalty, which identifies the optimal 
number of change points without a supervised choice of 
penalty value [57, 58]. Locations of the identified num-
ber of change points were detected using Dirichlet pri-
ors (α = number of identified change points) in the mcp R 
package (version 0.3.0, [59]).

Data manipulation was conducted with the data.table 
(version 1.13.0, [60]) and sf (version 0.9.5, [61]) pack-
ages in R, and figures were produced with the ggplot2 
package (version 3.3.2, [62]). Data and R code used to 
conduct GAM fitting and  D50 prediction procedures 
can be found in the Additional Files 1 and 2.

Supplementary Information
The online version contains supplementary material available at https ://doi.
org/10.1186/s4031 7-021-00233 -3.

Additional file 1: Experimental dataset and README. (1) README: 
Metadata for the minimal dataset in ”Additional file 1” sheet. (2) Additional 
file 1: Minimal dataset necessary to interpret, replicate and build upon the 
findings reported in the manuscript. 

Additional file 2: Annotated R analysis. Annotated R code. Can be used 
to replicate the major findings reported in the manuscript using the data 
found in the “Additional file 1” sheet within Additional file 1.
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ΔT: Difference between SST and BWT; BWT: Bottom water temperature; °C: 
Degrees Celsius; D50: Distance at 50% detectability; GAM: Generalized additive 
model; m: Meters; mV: Millivolts; SMAB: Southern Mid-Atlantic Bight; RMSE: 
Root-mean-square error; SST: Sea surface temperature.

Table 3 Description of variables included in the model selection process

Name Units Range Type Source

Detection frequency Detections 
 transmissions−1 day−1

0–1 Response Derived

Ambient noise at 69 kHz mV 171.3–703.9 Predictor Recorded by receiver in situ

Distance m 0–800 Predictor Derived from GPS location of 
receiver deployment

Sea surface temperature (SST) °C 3.5–27.4 Predictor JPL MUR MEaSUREs Project [52]

Bottom water temperature (BWT) °C 2.9–24.6 Predictor Recorded by receiver in situ

ΔT °C −1.7–17.4 Predictor Derived: ΔT = SST—BWT
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