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METHODOLOGY

The scale of the whale: using video-tag 
data to evaluate sea-surface ice concentration 
from the perspective of individual Antarctic 
minke whales
Jacob M. J. Linsky1* , Nicole Wilson1, David E. Cade1,2, Jeremy A. Goldbogen2, David W. Johnston3 
and Ari S. Friedlaender1

Abstract 

Background: Advances in biologging technology allow researchers access to previously unobservable behavioral 
states and movement patterns of marine animals. To relate behaviors with environmental variables, features must 
be evaluated at scales relevant to the animal or behavior. Remotely sensed environmental data, collected via satel-
lites, often suffers from the effects of cloud cover and lacks the spatial or temporal resolution to adequately link with 
individual animal behaviors or behavioral bouts. This study establishes a new method for remotely and continuously 
quantifying surface ice concentration (SIC) at a scale relevant to individual whales using on-animal tag video data.

Results: Motion-sensing and video-recording suction cup tags were deployed on 7 Antarctic minke whales (Balaeno-
ptera bonaerensis) around the Antarctic Peninsula in February and March of 2018. To compare the scale of camera-tag 
observations with satellite imagery, the area of view was simulated using camera-tag parameters. For expected condi-
tions, we found the visible area maximum to be ~ 100m2 which indicates that observations occur at an equivalent or 
finer scale than a single pixel of high-resolution visible spectrum satellite imagery. SIC was classified into one of six 
bins (0%, 1–20%, 21–40%, 41–60%, 61–80%, 81–100%) by two independent observers for the initial and final surfacing 
between dives. In the event of a disagreement, a third independent observer was introduced, and the median of the 
three observer’s values was used. Initial results (n = 6) show that Antarctic minke whales in the coastal bays of the Ant-
arctic Peninsula spend 52% of their time in open water, and only 15% of their time in water with SIC greater than 20%. 
Over time, we find significant variation in observed SIC, indicating that Antarctic minke occupy an extremely dynamic 
environment. Sentinel-2 satellite-based approaches of sea ice assessment were not possible because of persistent 
cloud cover during the study period.

Conclusion: Tag-video offers a means to evaluate ice concentration at spatial and temporal scales relevant to the 
individual. Combined with information on underwater behavior, our ability to quantify SIC continuously at the scale of 
the animal will improve upon current remote sensing methods to understand the link between animal behavior and 
these dynamic environmental variables.

Keywords: Antarctic Peninsula, Tag-video, Minke whale, Sea ice, Ice concentration, Biologging

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Advances in animal-borne tag technology enable 
researchers to record and analyze previously inaccessible 
in situ behavior and kinematics of animals [1, 2]. Beyond 
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elucidating animal behavior, animal-borne tags have been 
built to collect oceanographic data during deployments 
on deep-diving marine mammals [3], and to monitor the 
spatial overlap between seabirds and fishing vessels at 
sea [4]. Thus, a precedent has been set for using biolog-
ging technology to record information that can be used 
to evaluate the relationship between an animal, its behav-
ior, and the surrounding environment (both physical and 
biological). To accurately understand these relationships, 
data must be collected concurrently in space and time, 
eliminating offset between behavioral and environmental 
observations.

Remote sensing can be used in conjunction with biolog-
ging data to make inferences about how animal distribu-
tion and behavior relate to their environment across a 
range of spatial and temporal scales. In the Polar Regions, 
ice is a critical feature of the environment and is com-
monly observed via satellite. Sea ice concentration can be 
computed from satellite passive microwave radiometry, 
producing a single estimate of the concentration over a 
relatively broad area of ~ 10km2 to ~ 2500km2—depending 
on data and methods used [5, 6]. The resolution of these 
data provides an excellent platform to measure monthly 
and annual trends in ice concentration at large spatial 
scales; however, higher resolution data is required to relate 
ice concentration to animal behavior at the submesoscale 
(< 1 km). Visible spectrum satellite imagery offers a more 
pragmatic resolution for this purpose, with a pixel resolu-
tion of up to 10 m (area = 100  m2) [7]. In the visible fre-
quency range, however, clouds often hamper any surface 
observations in the WAP region, and additionally, any such 
observations require daylight to resolve features. Clouds 
and daylight are not the only problems with existing visible 
spectrum satellite data, but also the regularity with which a 
high-resolution image is taken at any given location. While 
coarse-scale passive microwave observations are avail-
able at least twice daily, high-resolution optical data at any 
given location are collected at a much lower cadence, (e.g., 
Landsat scenes are collected every 16 days, and combining 
observations from Landsat 8 and Sentinel 2 sensors would 
achieve at best 4.5 days revisit rate [8]). Synthetic Aperture 
Radar (SAR) can provide similar fine resolution estimates 
of ice presence and thickness independent of weather con-
ditions [9]. While the spatial resolution may be appropriate 
to link ice to animal behavior at submesoscales, the likeli-
hood of timely satellite images coinciding with data collec-
tion are low, and in many cases tasking SAR instruments 
to collect synoptic imagery is expensive (e.g., RADARSAT) 
and may still not capture appropriate scenes if field opera-
tions are out of phase due to local conditions. These chal-
lenges necessitate new tools to more accurately determine 
associations between animals and their surrounding ice 
environment in polar regions.

In both the Arctic and Antarctic, many species have 
evolved life histories that are dependent on sea ice. From 
zooplankton like Euphausiid krill that feed on under-ice 
algal communities, to penguins and seals that haul out 
on ice floes to rest, to polar bears that traverse and hunt 
seals on winter pack ice, sea ice is critical. Antarctic minke 
whales (AMW) are the largest ice-affiliated krill predator 
and most numerous baleen whale in the Southern Ocean. 
Antarctic minke are intimately tied to ice, yet very little is 
known about their behavior, habitat use, foraging ecology, 
and movement patterns with respect to their environment 
[10, 11]. This information is critical not only to define how 
these whales interact with their environment, but to bet-
ter understand and forecast the impacts of climate change. 
The Antarctic Peninsula is warming faster than nearly any 
other region on the planet, manifesting in decreases in the 
amount, duration, and extent of winter sea ice [12]. Thus, 
quantifying the ice-covered habitats that AMW utilize at 
scales that are relevant to the individual animal will allow 
for a greater understanding of the ecological relationships 
between these krill predators, their environment, and the 
impacts that climate change will have on the amount of 
available habitat.

Given the gaps in our current ability to measure the 
relationships between minke whale behavior and ice 
coverage in their environment, the goal of this paper is 
to develop a robust method for evaluating the amount 
of surface ice that AMWs encounter using animal-borne 
motion-sensing and video-recording tags. Using new 
biologging technology, this method can be used to accu-
rately and continuously assess the ice concentration in 
the environment that AMWs occupy. This method, used 
to quantify the ecological relationships between AMWs 
and their environment at scales that traditional remote 
sensing techniques cannot resolve, will fill a critical gap 
in our understanding of the complex niche of these pago-
philic predators in a rapidly changing environment.

Materials and methods
Data in this study were collected using Customized Ani-
mal Tracking Solutions (CATS) multisensory suction 
cup attached archival tags [13, 14] between 1/25/2018–
3/6/2018. Animal-born video was recorded during 6 
tag deployments with 1280 × 720 pixel resolution cam-
eras, and one deployment (see Table  1: deployment #1) 
at 1920 × 1080 resolution. All deployments occurred in 
coastal waters on the Western side of the Antarctic Pen-
insula, with one deployment occurring in the Penola 
Strait, two in Andvord Bay, and four in Paradise Bay 
(Fig. 1).

Tags were deployed via a hand-held 6-m carbon fiber 
pole from a ridged-hulled inflatable boat (RHIB) or 
Zodiac inflatable boat. All tags contained accelerometers 
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that sampled at 400 Hz, magnetometers and gyroscopes 
at 50  Hz, and pressure, light, temperature and GPS 
at 10  Hz. All data were decimated to 10  Hz, tag orien-
tation on the animal was corrected for, and animal ori-
entation was calculated using custom-written scripts 
in Matlab 2014 [13, 15]. Animal speed was determined 
using the amplitude of tag vibrations [16]. Positions of 
the whales were calculated at 10 Hz over the duration of 
the deployment from georeferenced pseudo-tracks (i.e., 
dead reckoned reconstructed tracks [17]), constructed 
from animal depth, speed, pitch, and heading, and cor-
rected via known positions. Fast acquiring GPS sensors 
were enabled on all tags to provide accurate georefer-
encing throughout the tag deployments when animals 
surfaced. For additional georeferenced positions of the 
tag we used the tag-on position and tag-off position col-
lected via hand-held or tag GPS, as well as opportunis-
tically collected positions during focal animal follows 
from a smavideoll inflatable boat using GPS, estimated 

range, and bearing. The resulting tracks still had multi-
hour gaps without additional location verification, so 
errors accumulated, particularly when the whale trave-
led below the threshold of detectable speed (~ 1  m/s)
[15]. Since the local habitat was an enclosed environment 
with complex coastlines, this provided an additional 
opportunity to anchor positions when a whale’s track 
matched the contour of the coastline but was not proxi-
mate to the coastline. By anchoring tracks such that the 
whale’s track assumed to be following the coastline was 
in the correct location, all tracks could be corrected so 
that they remained in suitable areas (i.e., not on land). 
This process was used to generate 6 additional anchor 
points for deployment bb180227-45, and 3 additional 
anchor points for deployment bb180304-40. Because 
these tracks are based on estimated anchors from coast-
line data, they cannot be assumed to be precise and we 
estimate that they are accurate within ± 1 km of the cal-
culated location.

Satellite imagery
SENTINEL-2 (L2A, visible and infrared spectrum) satel-
lite data was sourced from the Sentinel-Hub EO Browser 
[7] between January 24th 2018 and March 7th 2018 (24 h 
before the beginning of the first deployment and 24  h 
from the end of the final deployment). Images were col-
lected for the full spatial range of all deployments, ren-
dering a search range of 10,530  km2. Date, time, % cloud 
cover, and the specific region of each image was recorded 
for comparison to tag data. The spatial resolution was 
dependent on the wavelength of light received with a 
maximum possible resolution of 10  m  (100m2) and a 
minimum of 60m  (3600m2).

Estimated surface area viewed from camera tag data
Area of view simulations were used to compare the 
scale of on-animal video observations to the pixel size 

Table 1 Deployment details

Deployments including time, id, hours of data (pressure, accelerometry, etc.) duration of video, number of tag positions (different views of surface due to tag slips) and 
the number of individual ice observations per deployment

Deployment # Deployment ID Start time Hours data Hours video # tag positions 
during video

# of ice 
observations

1 Bb180125-30 1/25/18 14:53:31 8:03:24 3:59:19 7 55

2 Bb180227-45 2/27/18 15:06:44 29:42:20 7:51:59 2 215

3 Bb180228-42 2/28/18 15:33:26 17:56:08 6:25:08 10 96

4 Bb180304-40 3/4/18 14:47:15 30:39:45 9:52:41 3 176

5 Bb180304-42 3/4/18 14:40:31 2:58:27 1:51:40 1 26

6 Bb180304-45 3/4/18 14:29:27 27:47:43 8:48:33 11 151

7 Bb180305-42b 3/5/18 15:34:39 16:41:31 7:08:52 2 144

Fig. 1 Areas of deployment. Red dots indicate the location of CATS 
video-recording and motion-sensing tag deployments on Antarctic 
minke whales. From southwest to northeast, deployments occurred 
in the Penola Strait, Paradise Bay, and Andvord Bay on the western 
side of the Antarctic Peninsula
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of satellite imagery. Visible surface area  (m2) was calcu-
lated as a function of typical depth, pitch, visibility and 
tag angle of view for each tag deployment using a custom 
MATLAB script. Camera parameters included the video 
resolution (# of pixels height and width) and in-water 
camera calibration tests provided the parameters of verti-
cal and horizontal angles of view. The distance from the 
top of the image to the center of visible surface in the 
image (Ds) and from center to the edge of visible surface 
in the image (Dl) were calculated based on initial values 
including depth (P) the angle from the surface to center 
(90°—pitch) ( β ), and the angle of view based on camera 
calibration tests ( α ) (Fig. 2). The angle between the sur-
face and the depth line (θ), was assumed to be 90°. Angles 
γ, δ and ε can be solved for by subtracting θ and the asso-
ciated bottom angle from 180. Ds and Dl may then be 
determined as follows:

(1)Do = sin

(

β −
1

2
α

)

× (
P

sinγ
),

In instances of high pitch where Do < 0, Do is assumed 
to be 0 as this indicates there is no gap between the 
nearest point of surface and the area within the FOV. 
The width of the image at the first row, center, and at 
the edge of visible surface in the image, was calculated 
using a series of right triangles with the side furthest 
from the tag representing ½ of the width at each of 
the three points of measurement. X,Y and Z repre-
sent the hypotenuse of a right triangle between the tag 

(2)Ds + Do = sinβ×

(

P

sinδ

)

(3)Do+ Ds+ Dl = sin

(

β+
1

2
α

)

×

(

P

sinǫ

)

,

Ds = resultsofequation2− resultsofeq.1

Dl = resultsofequation3− resultsofeq.2
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Fig. 2 Measurements for area of view estimates. (above) Lateral view of area estimate measurements where vertical angle of view for the camera is 
represented by angle a, and angle between the depth line and center of view (as calculated from pitch) is represented as angle b. (right) Overhead 
view of area estimate measurements where Wl represents the width of the camera field of view at the furthest point of visible surface from the tag, 
Wc represents the width at the center of the visible surface and Ws represents the width of the closest point of visible surface to the tag (top of 
screen)
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position below the surface, the top, center and edge of 
the image (respectively) and the edge of the horizontal 
angle at each point (Fig.  2 overhead view). The inner 
sides of these triangles are  FOVshort, center of view and 
 FOVlong which are not visible in the overhead view (see 
Fig. 2 vertical view). The lengths of the inner sides were 
determined using:

where x is the angle (γ, δ, ε) corresponding to the inner 
side.

Angles κ, λ and μ are calculated by subtracting ν (90° 
angle from the center to edge of image) and ι (½ the 
horizontal field of view) from 180 (Fig.  2). With this 
information the distances can be calculated as:

Results are then multiplied by two to yield the width 
at each point.

For instances where FOVshort or FOVlong are > vis-
ibility, the height (in # of pixels) were truncated to only 
represent pixels within the visible range. For our simu-
lations, we assumed no camera distortion as all cam-
eras used in this study were designed for in-water film. 
For other cameras and lenses (such as fisheye, in-air, or 
VR), distortion should be accounted for as not all pixels 
may represent a similar portion of the angle of view.

A fitted polynomial regression using the polyfit 
function in Matlab was implemented to interpolate a 
smooth curve indicating the distance to the far edge of 
each pixel for both the vertical and horizontal measure-
ments. The height of pixels in each row (N) was deter-
mined as:

Width for each pixel in each row was calculated as:

innerlength = sinθ ×

(

P

sinx

)

,

1

2
Ws = sinι×

(

FOVshort

sinκ

)

,

1

2
Wc = sinι×

(

centerofview

sin�

)

,

1

2
Wl = sinι×

(

FOVlong

sinµ

)

.

Pixelheight(N) = verticalpolyfit(N)− verticalpolyfit(N − 1)

Height and width results were multiplied element by 
element to create a matrix representing the area of each 
pixel in the photo. The sum of these elements produce 
an estimated area.

The included simulations represent the area at a still 
frame assuming the given parameters and value at the 
x-axis. This information may be extrapolated to moving 
video using the function:

where n represents individual video frames. With reli-
able speed estimates this method may produce a more 
accurate area estimate for the video assessment, particu-
larly in instances of high speed and low pitch.

For our camera parameters, roll was found to be 
arbitrary in the area estimates (thus all simulations 
assumed roll = 0). This is to be expected with a for-
ward-facing camera, as the image is centered on the 
roll axis. However, roll must be accounted for any tag 
in which the camera is not oriented as such. Consider 
also that at instances of higher roll in a deployment, 
the animal’s body may take up more of the frame and 
reduce the visible surface area. For this reason, this 
study only includes ice observations where the roll of 
the tag is <  ± 90˚.

Visibility conditions on the peninsula are known to 
vary widely with productivity, and anecdotally, visibility 
has been estimated to be as high as 40 m. During these 
deployments, the depth at which the surface became 
visible indicated lower visibility conditions of ~ 5–15 
depending on the time and location of the observa-
tion. The visibility values tested in our simulations are 
intended to reflect the conditions occurring during the 
deployments as opposed to theoretical maximum/mini-
mum conditions reported in the area.

Scoring of ice observation
Animal tag video was viewed with Behavioral Obser-
vation Research Interactive Software (BORIS) [18]. 
Using BORIS, an observer marked the initial and final 
surfacing of each surface series for evaluation (Fig.  3). 
Two independent observers evaluated ice concentra-
tion as a % value in one of 6 concentration categories: 
0%, 1–20%, 21–40%, 41–60%, 61–80%, 81–100% (Fig. 4, 
Additional File 1). If scores were not in agreement for a 
given point, an additional evaluation was made by a third 

Pixelwidth(N) =
Horizontalpolyfit(N)

Width(total#ofpixels)

Videoarea = Areaestimate+
∑#offrames

n=2
wln×(

speedninm/s

framespersecond
−(depthn−1−depthn)),
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observer, and the median value determined as the ice 
concentration. 

Each evaluation took place from the first frame in 
which the surface is visible upon ascent until the frame 
in which the camera reaches the surface of the water 
(or when the animal initiates its descent if the cam-
era does not break the surface). The steepest angle to 
the visible surface  (FOVshort) varied between pitches 
of 23–75 degrees, with an average pitch of 47 degrees. 

Continuously assessing video allowed the observers to 
use movement as a cue for the size and depth of larger 
chunks of ice, as well as help to identify ice concentration 
in sunny areas.

The observations included in this study primarily 
occurred in open water, or within glacial bays along the 
coast of the West Antarctic Peninsula. During summer 
in the bays, the ice coverage primarily consists of broken 
chunks (brash) consisting of glacial and/or marine ice. In 
this study, “surface ice” refers to any ice observed in the 
marine environment, though not all of the ice may be of 
marine origin.

Each ice observation in this study is synchronized with 
satellite GPS time prior to deployment. This allows for 
video observations to be accurately aligned with behavioral 
data provided by other tag sensors (Fig. 3). As a result this 
methodology provides extremely fine temporal resolution 
for comparing ice observations with any other tag-derived 
data.

Results
Satellite imagery
From our search criteria the Sentinel-Hub EO browser 
yielded 21 satellite scenes with an average cloud cover of 
80.47%. 12 of the images in this area overlapped with tag 
GPS data (regardless of time), with the cloud cover in this 
subset averaging 79.04% cloud cover. None of the satellite 

Fig. 3 Combining environmental and behavioral data. Ice observations in relation to dive profile and behavioral information from a segment of 
the second deployment. Ice observations are represented by the colored dots over the dive profile in the upper graph, with pitch roll and heading 
of the animal represented in the lower graph. Ice observations collected from the same platform as the sensor data allow for temporal precision in 
linking the overhead ice coverage to animal behavior

Fig. 4 Ice categories. Example of typical ice image for each category 
from animal-borne tag
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images were taken during periods of tag deployments, 
though one image was taken within a 24 h window (~ 2 h 
34  min prior to the deployment on 02/28/19). Cloud 
cover for this image was recorded as 91.48%, rendering 
inadequate view of the surface for ice analysis.

Area of view estimates
Area of view simulations (Fig.  5) show that under rea-
sonable conditions the visible surface area from tag can 
be expected to represent an area similar or finer than a 
typical 10 m  (100m2) pixel of visible satellite imagery. As 
depth decreases (Fig. 5a, d) AOV was found to increase 
as more pixels come within visible range. When all possi-
ble pixels contain visible surface, the AOV then decreases 
as the camera ascends towards the surface (imagine Fig. 2 
as the tag travels up the depth line P). From the point at 
which visibility impacts the tag field of view, our simula-
tion show a linear decline towards an area of  0m2 as vis-
ibility is reduced (Fig. 5b, e). Moderate pitch was shown 
to produce the largest area estimates, with reduced area 
as the tag approached a vertical or horizontal position 
(Fig.  5c, f ). To relate these simulations to our deploy-
ments, tag data of the first full view of the surface for 
each tag position (with tag slips determined by changes 
in the accelerometer orientation) was recorded for 36 
independent tag positions (Table 1).

For the first fully visible frame of surface, we can 
assume that FOVlong (Fig. 2) represents the visibility. If 
we assume the mean depth and pitch (Table 2) and solve 
for the length of FOVlong, we find a typical visibility of 
10.00 m. Under these parameters, the average image con-
tains 43.46m2 of visible surface. These findings indicate 

that the typical area viewed by a camera tag is approxi-
mately half the area of a single visible spectrum satellite 
pixel.

Ice observation
Across all 7 deployments, observers recorded ice con-
centration for 863 surfacings (Table  1). The tag posi-
tions and ice observations indicated in Table 1 exclude 
instances where the tag was positioned at a roll angle 
greater than ± 90 degrees from the dorsal of the ani-
mal. For some of the deployments, this means that ice 
concentration was not recorded for the entirety of the 
video.

Our results indicate that Antarctic minke whales in the 
coastal bays around the West Antarctic Peninsula occupy 
low ice content areas for the majority of the time during 
which video was recorded, with 84.36% of observations 
in ≤ 20% ice cover (Table 3). Ice was present in 48.55% of 
observations, however only 8.22% were recorded as > 40% 
ice cover. 

Individual deployments, however, showed variabil-
ity in observed ice content, depending on the location 
of the deployment and behavior of the animal. The left 
side of Fig.  6 shows deployment bb180125-30 from the 
Penola strait. The pseudo-track reveals that the animal 
is primarily moving in open water along a fairly straight 
path, indicating traveling or resting behavior. This con-
trasts with the right side (Fig. 6) deployment, bb180227-
45 from Andvord Bay, in which the animal demonstrates 
fidelity to locations with high-ice concentration, indicat-
ing the occurrence of foraging behavior under ice. By 
linking ice observations with associated tag-data (Figs. 3, 

Table 2 Tag depth and orientation data

Depth and pitch statistics from the 36 tag orientations in which ice observation occurred

Depth (m) Pitch (°)

Min 0.739553 -28.27

Max 12.08108 49.18543

Mean 4.853004 13.05581

Standard deviation 3.056399 18.92234

Table 3 Observed ice concentration

Percentage of ice concentration observations per bin

Ice cover 0% 1–20% 21–40% 41–60% 61–80% 81–100%

# of observations 444 284 64 33 21 17

Frequency observed 51.45% 32.91% 7.42% 3.82% 2.43% 1.97%
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6), the relationships between location, ice cover and ani-
mal behavior can be more accurately investigated.

Discussion
Animal-borne video data offer previously inaccessible 
insight into how marine species, such as the Antarctic 
minke whale, interact with their physical environment. 
Previous work in the region has relied on visual sighting 
surveys that provide information on animal distribution 
at relatively coarse spatial scales and link these to satellite 
imagery at scales orders of magnitude greater than what 
we are able to measure from the animal’s perspective [19, 
20]. Similarly, the only published account of Antarctic 
minke whale tag-derived behavior in relation to surface 
ice used positions from Argos tags that have error esti-
mates of up to several kilometers, and linked behavioral 
state (transiting versus area-restricted search) to coarse 
satellite-derived sea ice concentration data [11]. Our 
method for describing surface ice concentration at such 
fine spatiotemporal scales, with continuous reliable infor-
mation on behavioral state from motion-sensing tags, 
will now allow greater quantification of how the behavior 
of this species is affected by ice in the environment. This 
information is critical for understanding both the ecology 
of the species and how it will be affected by the changing 
ice conditions.

One of the advances that our method provides relative 
to current satellite technology is the spatial and temporal 
precision in linking environmental observation to fine-
scale behavioral data. Surface ice is incredibly dynamic 
and can change quickly depending on local weather and 
oceanographic conditions [12]. Thus, any differences 
in the timing of animal behavior and ice measurements 
could generate spurious results on how ice influences 
animal behavior. By combining behavioral observations 
and ice concentration on the same tag platform, we can 
eliminate any such offset. This will allow future studies 
to compare environmental features with animal behav-
iors ranging from feeding rates on a dive-by-dive basis to 
specific kinematic strategies of a single event over mere 
seconds (Fig.  3). Our area of view analysis reveals that 
the spatial scale of our observations are equivalent to or 
finer than a single satellite pixel representing 10–60  m 
(100–3600  m2). These results indicate that our method 
offers significant increases in temporal accuracy from 
SAR and visible spectrum ice assessments, and in spatial 
(and likely temporal depending on the timing of satellite 
passes) accuracy from microwave radiometry.

In this study, we chose to include sub-pixel (satel-
lite) information in the form of ice concentration bins. 
This allowed us to further characterize the percent-
age of ice-covered environment around the animal, but 
inevitably introduces subjectivity in the assessments. 

We chose not to adopt a computer vision or machine 
learning approach to ice quantification due to the chal-
lenges presented by the highly variable surface condi-
tions and backlighting. Still, observer subjectivity may 
be decreased by limiting the number of bins. For areas 
where remote data are scarcely available, or where sea 
ice is permanent (e.g., fast-ice), even a binary (ice or no 
ice) evaluation may provide valuable information that is 
otherwise unobtainable. Though our method allows for 
a robust assessment of the environment proximate to 
the animal, it lacks the ability to accurately map the ice 
distribution of the greater environment beyond the tag’s 
visual field of view. To adequately answer questions that 
require such knowledge, a combination of techniques 
may be required.

Recent advances in remote sensing drone technol-
ogy may facilitate the development of an approach to 
study the dynamics of ice distribution at a temporal 
scale relevant to animal behavior [21]. As drones can 
cover area quickly and collect high-resolution imagery 
below clouds, they can be used to establish a pre-
cise estimate of the ice-covered habitat available in a 
given location either as a frequency distribution of % 
ice cover or some other metric for the amount of ice 
cover types and concentrations. This information can 
then be compared to tag-observed surface ice to deter-
mine if the animal utilizes ice cover at similar or differ-
ent frequencies from what is available. This approach 
will allow a description of animal habitat usage with-
out having to rely on potentially inaccurate GPS data 
to locate the animal within a specific photograph of ice 
distribution.

While the main function of this technology and 
method is to better understand the ecology of the ani-
mals in question, tag video may also be useful in con-
cert with remote sensing to understand sub-pixel 
variation for methods of ice classification in coarse 
resolution satellite data. For example, close range 
tag-derived ice data may be useful for understanding 
sub-pixel variation in ice types within the ice cover-
age presented in passive microwave imagery. However, 
satellite validation at the submesoscale requires greater 
spatial coverage of animal-borne video and high-quality 
locational information, especially for emerging high-
resolution satellite data.

Conclusion
The ability to precisely and accurately understand the 
relationships between different animals and their envi-
ronment is a necessary, and often times lacking, piece 
of information that must be available in order to effec-
tively understand the impacts of environmental change. 
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This method sets the precedent of using tag video data 
to evaluate ice conditions, allowing us to link environ-
mental and behavioral observations with spatial and 
temporal precision that is not currently possible using 
satellite remote sensing methods. In rapidly changing 
polar regions, this information is particularly important 
for the numerous species that have evolved to rely on ice 
as a substrate for critical life history events. Specifically 
for Antarctic minke whales, this method will allow us to 
better understand how and if rapid warming and changes 
to ice conditions around the Antarctic Peninsula will ulti-
mately make this area unsuitable for them to inhabit.
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