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SHORT COMMUNICATION

Vitality models found useful in modeling 
tag-failure times in acoustic-tag survival studies
John R. Skalski*  and Steven L. Whitlock

Abstract 

Acoustic telemetry studies often rely on the assumption that premature tag failure does not affect the validity of 
inferences. However, in some cases this assumption is possibly or likely invalid and it is necessary to apply a correc-
tion to estimation procedures. The question of which approaches and specific models are best suited to modeling 
acoustic tag failures has received little research attention. In this short communication, we present a meta-analysis 
of 42 acoustic tag-life studies, originally used to correct survival studies involving outmigrating juvenile salmonids 
in the Columbia/Snake river basin. We compare the performance of nine alternative parametric models including 
common failure–time/survival models and the vitality models of Li and Anderson Theor Popul Biol 76:118–131, (2009) 
and Demogr Res 28:341–372, (2013). The tag-life studies used acoustic tags from three different tag manufacturers, 
had expected lifetimes between 12 and 61 days, and had dry weights ranging from 0.22 to 1.65 g. In 57% of the cases, 
the vitality models of Li and Anderson Theor Popul Biol 76:118–131, (2009) and Demogr Res 28:341–372, (2013) fit 
the tag-failure times best. The vitality models were also the second-best choices in 17% of the cases. Together, the 
vitality models, log-logistic, (19%), and gamma models (14%) accounted for 90% of the models selected. Unlike more 
traditional failure–time models (e.g., Weibull, Gompertz, gamma, and log-logistic), the vitality models are capable 
of characterizing both the early onset of tag failure due to manufacturing errors and the anticipated battery life. We 
provide further guidance on appropriate sample sizes (50–100 tags) and procedures to be considered when applying 
precise tag-life corrections in release–recapture survival studies.
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Background
Acoustic telemetry is a powerful tool for studying fish 
movement and survival [9, 16]. While many studies rea-
sonably assume that tags do not fail during the study 
period [24, 26], there are other studies with design limita-
tions related to the size of the organism, duration of the 
study, and detection capability that make a degree of tag 
failure within a study unavoidable [2, 33]. Under these 
circumstances, it becomes necessary to correct for tag 
life expectancies in order to make reliable inferences [8, 
35].

Correcting for premature acoustic tag failures is par-
ticularly critical in estimating the survival of outmigrat-
ing juvenile salmonids at dams in major rivers [12, 30, 
31]. Often in these studies, investigators apply single [7] 
or paired release–recapture [5] models to estimate per-
ceived survival, the joint probability of the fish and tag 
being alive from one detection point to another over 
time. These perceived estimates of survival are negatively 
biased in the presence of post-release tag failure [1], 
unless information on tag life or failure times is available 
for correction.

The degree of severity of the bias from post-release 
tag failure is dictated by the amount of temporal overlap 
between the distribution of detection times at the inter-
rogation sites and the tag-life distribution. However, even 
minor tag failure may be consequential when survival 
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estimates are required to meet specific standards. For 
example, over the last decade, federal hydroproject oper-
ators had to comply with survival threshold and mini-
mum precision criteria (e.g., survival ≥ 0.96 average dam 
passage survival for juvenile spring Chinook salmon and 
steelhead with standard error ≤ 0.015) [32]. Even a small 
degree of bias can be consequential in regulatory studies. 
It is advisable to conduct concurrent tag-life studies, in 
which a sample of tags is activated alongside active tags 
used in the survival study because tag-failure rates are 
known to vary with manufacturing lot and ambient water 
temperature [3]. The tags selected for the tag-life stud-
ies need to be representative of the tags used in survival 
studies. If distinct tag lots are to be used, it may be pru-
dent to have tag-lot specific tag-life studies. These sam-
pled tags are monitored by a hydrophone to measure the 
time until failure, and a model is then fit that character-
izes the failure time curve, which in turn is used to cor-
rect survival estimates [35].

Some studies have modeled tag failure using nonpara-
metric approaches [8, 14], while Townsend et  al. [35] 
recommended a parametric approach to modeling the 
failure–time data, because if a parametric model is found 
that fits the empirical data, the precision of the tag-life 
corrected survival estimates is improved. There is a suite 
of traditional failure–time distributions to select from 
when performing tag-life corrections including gamma, 
Gompertz [11], log-logistic, log-normal [10], and Weibull 
[36]. Alternative models vary in flexibility and how well 
they fit failure–time data based on the number of param-
eters and the assumption of how risk of failure changes 
through time.

A seemingly unlikely source for further model con-
sideration comes from the study of population demo-
graphics and animal survival. Li and Anderson [21, 22] 
modeled death times as a survival process that depends 
on two components, a vitality-dependent process intrin-
sic to the individual and a vitality-independent process 
associated with accidental death. These two processes 
are analogous to the propensity of battery failure and 
accidental failure in modeling tag life. Some of these acci-
dental failures have been traced to water intrusion, elec-
tric leakage, and manufacturing errors. Because tag lots 
often have a mixture of these two sources of failure, the 
4-parameter versions of these models (“Vitality (2009)” 
and “Vitality (2013)” hereafter) have the potential to bet-
ter model tag-failure times where simpler models cannot 
capture the complexity of the survival process.

Here, in this short communication, we evaluated the 
fit of nine failure–time models to 42 different acoustic-
tag life studies all conducted using the same protocol 
between 2002 and 2018. Our purpose was to thoroughly 
examine the relative performance of these models so as 

to provide guidance to investigators on the best candi-
date models and strategies for incorporating tag-life cor-
rections into release–recapture survival studies of fish.

Methods
We first describe the nine models, then our procedure 
for evaluating goodness-of-fit (GOF) and ranking the 
performance of models for each study. We have limited 
our model descriptions to their general characteristics 
and relationships. Additional details on the conventional 
failure–time/survival models that we evaluated may be 
found in Lee and Wang [20]. The structure and motiva-
tion of the two 4-parameter Vitality models are described 
in Li and Anderson [21, 22].

Tag‑failure models
The survival function begins with a value of 1 (i.e., 100%) 
at time t = 0 and declines as a function of time. A survival 
function S(t) can be formed from any positive continu-
ous probability distribution via its cumulative distribu-
tion function

where F(t) is the cumulative distribution function, where

and where f(t) is the density function. For reference, the 
hazard function is defined as

and is also known as the instantaneous failure rate and 
characterizes the risk of failure over time [20]. The 
shape of the hazard function is often useful in selecting 
a failure–time model to a specific failure–time process 
(Table 1).

Perhaps the simplest parametric failure–time model is 
the exponential model, with survival function

where the hazard rate is constant and defined by λ. 
Acoustic tag-failure rate is not uniform over time; thus, 
the exponential model is a generally a poor choice for 
this application. We excluded the exponential model 
from our analysis for this reason. Nonetheless, the expo-
nential model is an appropriate starting point as it forms 
the basis of more complex failure–time models. The 

S(t) = 1− F(t),

F(t) =
∞∫

0

f (t)dt,

h(t) = f (t)

S(t)
,

S(t) = e(−�t),
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exponential distribution is a special case of the 2-param-
eter Weibull distribution, with survival function

which in turn is a special case of the 3-parameter Weibull 
distribution with survival function [10, 36]:

with shape (β), scale (λ), and shift (γ) parameters. The 
shift parameter describes the endpoint of an initial “fail-
ure free” portion of the curve.

Other common survival models that we considered 
were the 2-parameter gamma

with γ shape and � scale parameters and the 3-parameter 
generalized gamma [18, 34]

which includes α , an intercept parameter. The haz-
ard function of the 2-parameter gamma decreases 
or increases to 1, whereas the generalized gamma 
approaches the value of α . The exponential, gamma, and 
Weibull distributions are special cases of the generalized 
gamma distribution.

The fifth distribution that we evaluated was the 
2-parameter Gompertz distribution [11], which is an 
extension of the exponential model that assumes the 
hazard rate increases exponentially with time or age. The 
survival function for the Gompertz model is

(1)S(t) = e−(�t)γ ,

(2)S(t) = e
−
(
t−γ
�

)β
,

(3)S(t) =
∞∫

t

�

Γ (γ )
(�t)γ−1e−�tdt,

(4)S(t) =
∞∫

t

α�αγ

Γ (γ )
tαγ−1e−(�t)αdt,

where parameters � and γ describe the intercept and 
slope of a log-linear regression equation for the hazard 
rate, respectively.

We considered the 2-parameter log-normal survival 
model that has a dome-shaped hazard function

with σ shape and μ scale parameters. The 2-parameter 
log-logistic has a similar shaped hazard function to the 
log-normal, but allows for steeper declines from the apex

with γ shape and � scale parameters.
The final two survival functions we examined were the 

4-parameter vitality models. The Vitality (2009) model 
assumes a normal distribution of initial vitality across a 
batch of tags and a stochastic decline toward zero vitality. 
The survival function of the Vitality (2009) is defined as

where Φ = cumulative normal distribution, r = wear rate, 
s = standard deviation in wear rate, k = rate of accidental 
failure, u = standard deviation in accidental failure.

The Vitality (2013) model has a slightly different 
parameterization that assumes the same stochastic 
decline in tag vitality but combined with a Poisson 

(5)
S(t) = e

{
− e�

γ (e
γ t−1)

}

,

(6)S(t) = 1

σ
√
2π
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t

1

x
e

(
− 1

2σ2
[log (t)−µ]2

)

dx,

(7)S(t) = 1

1+ γ t�
,

(8)

S(t) =1−
(
Φ

(
1− rt√
u2 + s2t

)
− e

(
2u2r2

s4
+ 2r

s2

)

Φ

(
2u2r + rt + 1√

u2 + s2t

))e−kt

,

Table 1 Brief description of  hazard functions for  the  nine failure–time models fit to  the  42 sets of  tag-life data 
plus the exponential function

Failure–time functions Hazard function description

Exponential Constant over time

Weibull (2) Linear or log-linear monotonic increase/decrease

Weibull (3) Linear or log-linear monotonic increase/decrease with a shift that represents a guaranteed (“fail-
ure free”) period

Log-normal Monotonic decrease or dome-shaped

Log-logistic Monotonic decrease or dome-shaped. Allows for steeper decrease from apex than the log-normal

Gompertz Constant initial hazard, which can remain constant or then have a quadratic increase/decrease

Gamma Monotonic increase or decrease to a hazard rate of 1

Generalized gamma Monotonic increase or decrease to a specific hazard rate of α

Vitality 2009 Initial hazard rate followed by a shift in rate

Vitality 2013 Initial hazard rate followed by a shift in rate
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process of challenge events of varying difficulty across 
the lifetime of the tag. The survival function is

where r = rate of vitality loss (intrinsic), s = spread of ini-
tial and evolving vitalities (intrinsic), � = frequency of 
challenges during life (extrinsic), β = magnitude of chal-
lenges (extrinsic).

We hypothesized that one or both vitality models 
would tend to fit acoustic-tag failure times well, as they 
allow for early onset of random tag failure due to acci-
dental failure as well as systemic battery failure later on. 
The accidental failure component, in addition to bat-
tery discharge also a stochastic process, gives the vitality 
models additional flexibility to fit data not found in other 
models.

Tag‑life studies
The 42 different tag-life studies were all performed 
with the same study procedures. Tags were system-
atically sampled from the tag lots used in salmon smolt 
survival studies conducted within the Columbia River 
Basin, 2002–2018. Within each test, tags were activated 
and monitored with hydrophones continuously until 
complete failure of all tags. The tags were submerged in 
ambient water the same temperature as the tagged fish 
encountered during the survival studies. Failure times 
were recorded to the minute. The failure time analyses 
used the time-to-failure measured in days and fractions 
of days.

The various acoustic tags analyzed were manufac-
tured by Advanced Telemetry Systems, Hydroacoustic 
Technology Incorporated, and Lotek, with 16, 25, and 5 
separate tag-life evaluations, respectively. Mean tag lives 
ranged from 12 to 61 days and sample sizes ranged from 
38 to 125 tags per study. Tag sizes ranged from 0.22 to 
1.65 g dry weight. Tags were set to emit acoustic pulses 
between 20 and 60 times per minute, depending on the 
specific needs of the study.

Model fitting and comparison
The failure time data from the different tag-life studies 
conducted between 2002 and 2018 were fit to the nine 
alternative failure–time models within the R program-
ming language and free software environment (https ://
www.r-proje ct.org). For the more conventional survival 
analysis models (1–7), we used model-fitting routines in 
the “FAdist” and “flexsurv” R packages [4, 15]. We fitted 
the two vitality models using routines available in the 
“Vitality” R package [25].

(9)

S(t) = t−3/2e(1−rt)2/2s2t

s
√
2π

(
Φ

(
1−rt
s
√
t

)
− e2r/s

2
Φ

(
− 1+rt

s
√
t

)) + �e−(1−rt)/β ,

Because of the diversity of models that we examined 
and the fact that many of the distributions involved were 
non-nested, we had to devise new metrics for assess-
ing GOF and ranking model performance. The 2- and 
3-parameter Weibull models and gamma and generalized 
gamma models are nested and as such can be compared 
using likelihood ratio tests [19]. However, the Gompertz, 
log-normal, log-logistic, and vitality models are not 
nested among themselves or the others. Also, in this situ-
ation, Akaike information criterion [6] cannot be used 
because the approach requires the alternative models 
share the same distribution.

Instead, we compared the various model fits to the 
empirical survival function using the nonparamet-
ric Kaplan and Meier [17] product-limit method. The 
Kaplan–Meier (K–M) method estimates the survival 
function as

where n = sample size, i = number of failures before time 
t.

Relative GOF of the alternative parametric models was 
measured by the average squared deviation between the 
empirical K–M and the fitted model values (Fig. 1) of S(t) 
across the n observed failure times, i.e.,

where Ŝ(ti) = survival value for parametric model at 
time t for the ith failure ( i = 1, . . . , n) , S(ti) = K–M sur-
vival value at time t for the ith tag failure ( i = 1, . . . , n) , 
p = number of fitted model parameters.

The number of parameters (p) serves as a penalty func-
tion for the number of estimated model parameters. 
The GOF was modeled after the mean square error for 
regression. The tag-failure model with the smallest GOF 
value was selected as the most appropriated.

We also performed lack-of-fit tests based on the K–M 
nonparametric curve (10). The test statistic for the Kol-
mogorov–Smirnov (K–S) test is the absolute value of 
the largest discrepancy between Ŝ(ti) and S(ti) anywhere 
along the fitted curve, i.e.,

Whereas the traditional K–S test assumes the theoretical 
distribution being tested and its parameters are a priori 
specified, in our case, they were estimated from the data. 
Therefore, we used the approach of Lilliefors [23], where 
the test distribution under the null hypothesis was 

(10)Ŝ(t) =
∏

t(i)<t

(
n− i

n− i + 1

)
,

(11)GOF =
∑n

i=1

(
Ŝ(ti)− S(ti)

)2

(n− p− 1)
,

(12)D = MAX
i = 1, . . . , n

∣∣∣Ŝ(ti)− S(ti)
∣∣∣.

https://www.r-project.org
https://www.r-project.org
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simulated from the fitted model via parametric boot-
strap. For each replicate test performed, a random sam-
ple size n was drawn from the fitted parameter survival 
function and the value D calculated. This simulation pro-
cess was replicated 50,000 times to create a distribution 
(Dsim) under the null hypothesis to which the actual 
observed statistic (D0) was compared. This number of 
simulations was selected to guarantee a precision 
of ± 0.004 in the estimated P-values 
( 
√
z20.975 · 0.5 · 0.5/50000 ). Estimated P-values for the Lil-

liefors tests are reported in Additional file 1, based on a 
α = 0.05 rejection criterion. Whereas GOF provided a 
measure of relative goodness-of-fit to compare alterna-
tive models, the K–S test assessed whether there was a 
significant lack-of-fit of the selected model (i.e., Ho: 
model fits vs. Ha: model does not fit). By construct, the 
GOF and the D0 of the K–S test are positively correlated.

Results
Two types of tag failure were observed in our meta-anal-
yses. The first is premature tag failure occurring within 
hours or just a few days after tag initiation. This tag 

failure is presumably the result of manufacturing error or 
mechanical failure of the tag per se. Of the 42 data sets 
we examined, at least 26 had obvious signs of premature 
mechanical failure. The second failure type was the antic-
ipated battery failure at the end of the tag life. This bat-
tery failure produces the cascade of failure times seen in 
the right tail of the failure–time curves (Fig. 2). Although 
our set of 42 tag-life studies was ill constructed for the 
direct purposes of determining factors affecting tag-life, 
a few patterns were apparent. Manufacturing quality 
improved over time as indicated by fewer and less-fre-
quent occurrences of premature tag failure, tag size (i.e., 
weight) decreased, and the tag-life to tag-weight ratio 
increased.

In 24 of the 42 cases (57%), a vitality model (2009 or 
2013) was selected as the best fit among the nine alter-
native parametric failure–time models evaluated. The 
log-logistic model was the second most common (19%) 
choice, followed by the gamma or generalized gamma 
(17%), Gompertz (5%), 3-parameter Weibull (2%), and 
log-normal (2%). In numerous cases there were little 
differences in GOF between first, second, or even third 
choices of survival models. The two versions of the vitality 

Fig. 1 Illustration of Kaplan–Meier (K–M) nonparametric and a fitted parametric survival function and observed deviations in survival values at the 
time of a failure event. The deviation in survival values is calculated at each time step in the K–M curve used in the GOF assessment (11)
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model (2009 and 2013) were found to be top-ranking 
with equal frequency (12 data sets each), suggesting that 
no one version was clearly superior from the standpoint 
of model fit. The two vitality models were ranked second 
best in an additional 17% of the cases. Both versions of 
the gamma model also performed equally well (3 data 
sets each). We encourage readers to examine the supple-
mental data, model fits, and the impact of premature tag 
failure on the tag-life curves.

The vitality models often outperformed other candi-
dates because they could account for both early failures 
defining the shoulder of the function and the later pre-
cipitous decline due to battery failure. The log-logistic 
model fit these initial failures better than the remaining 
candidate models, although their survival functions were 
almost always positioned above those of the vitality mod-
els in the shoulder of the curve.

In all cases, the top-ranking survival model according 
to GOF was not rejected by the K–S test of lack-of-fit 
(P < 0.05). However, we found the K–S test to be insen-
sitive to lack-of-fit. The K–S test rejected a fitted model 
only 60 times out of 378 (15.9%; 42 data sets × 9 candi-
date models) despite visually obvious cases of lack-of-fit. 

Therefore, non-rejection of a K-S test should not be the 
sole criterion for model selection. Nevertheless, we found 
a strong inverse relationship between the natural log of 
GOF value and the P value of the K–S tests (r = − 0.79, 
P < 0.001). With P-values ranging from 0 to 1, P-values 
near 1 indicated smaller discrepancy between observed 
and fitted values of the failure–time data. Using the K–S 
maximum P-value as a criterion for model selection, the 
vitality models were again selected in 57% of the cases 
studied, followed again by the log-logistic model at 19%.

In addition to being most frequently top-ranking, the 
vitality models also demonstrated considerable flexibility 
in the shape of the survival curves. We found that many 
of the tag-life datasets could be categorized as having a 
particular shape to which one of the conventional fail-
ure model was best suited. For example, gamma mod-
els tended to be top-ranking for data sets with survival 
curves resembling a half-normal distribution. Although 
vitality models were not always top-ranked for these 
cases, they consistently provided a fit that was competi-
tive with the other top-ranked models because they could 
emulate the shape of their survival functions (Fig. 2).

Fig. 2 Four examples of tag-failure datasets with curves representing top-ranking survival models based on our GOF measure versus the Vitality 
2009 model. Each panel describes an example with the Kaplan–Meier empirical estimates, the fit from the 2009 Vitality model and the top-ranked 
model according to our GOF measure a log-logistic, b 3-parameter gamma, c Gompertz, d and 2-parameter gamma
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Discussion
Tagging studies with the objectives of describing fish 
movement and life history often do not include tag-
life studies as part of the investigation. Such studies are 
designed based on the anticipated life expectancy of the 
tags and the temporal requirements of the investigation 
[2]. On the other hand, fish survival studies based on 
regulatory requirements with mandated survival thresh-
olds will generally need to include formal tag-life studies 
[32]. Without the ancillary tag-life information, perceived 
survival estimates calculated by classic release–recapture 
models will be negatively biased by the presence of tag 
failure [13, 35]. The size of the potential bias increases as 
the expected tag-life decreases and the expected travel 
time to detection sites increases. At the point where the 
travel times begin exceeding maximum tag life, bias cor-
rection becomes incomplete and the negative bias of 
the survival estimates increases. When actual fish sur-
vival is close to the regulatory thresholds, even small 
bias corrections can be consequential. For example, 
the compliance threshold for yearling Chinook salmon 
(Oncorhynchus tshawytscha) and steelhead smolt survival 
through a hydroelectric project (i.e., reservoir plus dam) 
in the mid-Columbia River is typically ≥ 93%, with an 
estimated standard error of ≤ 0.025 [28, 29, 32]. At feder-
ally operated hydroprojects in the lower Snake River and 
mainstem Columbia River, dam passage survival has a 
threshold of 0.96 for yearling Chinook salmon and steel-
head smolts or 0.93 for subyearling Chinook salmon with 
a precision requirement of ŜE ≤ 0.015. Here even small 
tag-life corrections of less than a percentage point can be 
important.

Rarely if ever do acoustic-tag manufacturers provide 
the results of a tag-life study as part of a tag-lot purchase. 
At best, manufacturers may provide a life expectancy for 
their products. But the meaning of say a 30-day tag is at 
best unclear. The average tag investigator may wrongly 
interpret a 30-day tag as guaranteeing all tags will have 
a minimum tag-life of 30 days. Instead, a 30-day tag-life 
expectancy actually guarantees some tags will indeed fail 
before 30 days. For example, the gamma-fitted tag-failure 
time data of Fig. 2 had a tag-life expectancy of 15.4 days, 
with minimum and maximum failure times of 8.5 and 
18.0, respectively. In that data set, 44% of the tags failed 
before the expected tag life of 15.4  days. For the log-
logistic fitted tag-failure time data of Fig.  2, 51% of the 
tags failed before the expected tag-life of 15.3 days. Con-
sequently, for investigators designing their studies based 
on tag-life expectancy, corrections for tag failure may be 
essential. To avoid possible effects of tag failure and the 
need to provide tag-life corrections to survival studies, 
investigators would need to use tag lots with life expec-
tations several times longer than expected maximum 

travel times. Among our 42 data sets, 62% had tag-failure 
times greater than 3 standard deviations to the left of the 
mean, 93% had tag failures 2 standard deviations to the 
left of the mean. We recommend at a minimum all tagged 
fish arrival times occur within the upper shoulder of the 
failure–time curve in order for tag-life corrections to be 
small and tractable.

We found clear evidence to support the use of the vital-
ity models for tag-life correction on the basis that these 
models were top-ranking in terms of GOF for the major-
ity of data sets and exhibited a variety of survival function 
shapes that matched empirical tag-life data sets (Fig. 2). 
We do not recommend that model selection be based 
solely on the non-rejection of the K–S lack-of-fit test, as 
the test is rather conservative in the range of sample sizes 
(38 to 125) we evaluated. We instead recommend that 
investigators evaluate the GOF of their tag-life data to a 
suite of alternative survivorship models using both ocular 
and numerical evaluations of model fit. Among these, the 
alternative models should include vitality, log-logistic, 
and the gamma family of models.

We found the Vitality (2009) model to be preferable to 
the Vitality (2013) model. The GOF measure did not sug-
gest clear dominance of one version of the vitality model 
over another. However, we found the tag-failure process 
to be more analogous to the Vitality (2009) model, which 
assumes early failures as a result of a variability in ini-
tial vitalities in the population followed by a stochastic 
decline. While the Vitality (2013) has some similar prop-
erties, it further assumes that individuals encounter chal-
lenges of varying magnitude over a lifetime, which is not 
particularly representative of the process that acoustic 
tags undergo. Our second reason for favoring the Vitality 
(2009) model was that the survival curve for this model 
was less frequently above the K-M estimates in the shoul-
der of the curve than its counterpart.

In our experience, the shoulder of the survivorship 
curve is where most of the tag-life correction occurs 
and therefore should be estimated with greatest accu-
racy. A common reason for the poor fit of many mod-
els was that the curve descended too early, “cutting off” 
the shoulder present in the empirical data. Proceeding 
with a model misspecified in this manner would result 
in an overcorrection of survival estimates. Poor fit in 
the shoulder of some the tag-life data was partly what 
motivated our experimentation with the vitality class of 
models. This shortcoming was common for all models 
that we compared with the exception of the vitality mod-
els and to a lesser extent the log-logistic model. In fact, 
Weibull, log-normal, and gamma models only properly 
fit tag-life datasets without any early outlying failures. 
The Gompertz model was somewhat of an exception in 
that it was competitive with the vitality models for 6 out 
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of 42 cases (14%) and where the initial decline in tag-life 
was relatively steep.

While providing tag-life-corrected survival estimates 
are within the reach of all investigators, it remains the 
responsibility of individual studies to determine the 
appropriateness of collecting this expensive auxiliary 
information. It must be acknowledged that tag-life stud-
ies are costly and there are important tradeoffs involved 
in conducting tag-life studies. Cost considerations occur 
at two levels. First, there is a question of a whether an 
independent tag-life study is warranted for a particular 
survival study. Second, there is a question of the num-
ber of tags that should be used. There are situations in 
which a single tag-life study may be applied to multiple 
release groups. However, it may be necessary to adjust 
the tag-life corrections for dissimilar release schedules. 
With respect to the second consideration, acoustic tags 
cost approximately $200–$250 each, resulting in a tag-
life study costing $10,000–$25,000, if 50–100 tags are 
used. In our experience with juvenile salmonid acoustic-
tag studies, sample sizes for tag-life studies should range 
between 50 and 100 tags. With 50 tags, the standard 
errors of the survival estimates are typically increased 
at the second and third decimal place. With 100 tags, 
the standard errors are changed at the third or fourth 
decimal place with the incorporation of the variability 
in tag-life data. Admittedly, not all studies warrant the 
same degree of precision as the survival estimates in our 
case studies. However, it is worth noting that the lower 
the sample size, the greater the chance that none of tags 
sampled for the tag-life study will possess defects that 
are actually present in tag population, in which case the 
early-failure process will not be incorporated into the 
correction.

Another important consideration when applying tag-
life corrections is whether it is appropriate to perform a 
censored analysis of the tag-life data. There are at least 
two scenarios where a right-censored tag-life analysis 
may be useful and appropriate. The first scenario occurs 
when the tag-life study is stopped/truncated before the 
last tag failure. In this case, a right-truncated failure–
time analysis is essential. Let T be the time of truncation, 
then the maximum likelihood estimates of the truncated 
model are based on the likelihood

where r is the number of tags that failed on or before 
the truncation time T. A second truncation scenario can 
occur when the observed fish travel times are relatively 
short compared to the observed tag-failure times and it 
is more accurate and easier to model tag-failure times to 

L ∝
r∏

i=1

f (ti) · S(T )n−r ,

some truncation point beyond the longest travel time. 
This truncation strategy is useful when failure–time dis-
tributions have difficulty fitting both the shoulder and tail 
of the failure–time curve. When inferences near the tail 
of the failure–time distributions are unnecessary, a trun-
cated right-tailed analysis may do a better job fitting the 
shoulder of the survivorship curve where travel times are 
likely more relevant.

Ideally, the duration of the survival studies should 
be timed to be completed while still in the left-hand 
shoulder of the tag-life curves. Should the duration of 
the survival study coincide with the right-hand cas-
cade of tag failures, tag-life corrections will be greater 
and consequences to precision more profound. In the 
case where the duration of the survival study exceeds 
the tag-life curve, tag-life corrections will be underes-
timated, and the survival estimates will remain nega-
tively biased to an unknown extent. Consequently, 
despite the mathematical ability to account for tag 
failure, it remains important to coordinate the dura-
tion of the field study with tag selection and function. 
Harnish et al. [12] discussed an issue of tag-life correc-
tion, unforeseen by Townsend et al. [35]. In their case, 
tag failures occurred so severely that it also caused an 
apparent negative bias in the distribution of arrival 
times.

The arrival times of acoustic-tagged fish are also a 
reflection of the tag-failure process. Properly, it is a 
mixture of distributions from both the travel time and 
tag-failure process. As a result, the tag-life correc-
tions described in Townsend et  al. [35] and Cowen and 
Schwartz [8] are more correctly termed bias adjustments 
than bias corrections. Harnish et  al. [12] identified this 
second source of bias by having independent travel time 
data from acoustic-tagged fish that were dual-tagged 
with PIT-tags [27] not subject to tag failure. For investi-
gators without the luxury of using dual-tagged fish, the 
prospect of residual bias after tag-life correction may 
exist. The prospect of this residual bias increases with 
steepness of the failure–time curve and the discrepancy 
between actual travel times and observed range of failure 
times in the tag-life study.

This paper describes a meta-analysis of the perfor-
mance of various models in fitting tag-life data sets and 
draws on extensive experience related to the application 
of tag-life correction to juvenile salmonid survival stud-
ies. We direct investigators to the freeware Program 
ATLAS (Active Tag Life Adjusted Survival), which can 
be used to interactively examine alterative tag-life mod-
els (i.e., vitality, Weibull), perform truncated tag-life 
analyses, and obtain tag-life corrected fish survival esti-
mates (http://www.cbr.washi ngton .edu/analy sis/apps/
atlas ). Other software available to analyze a range of 

http://www.cbr.washington.edu/analysis/apps/atlas
http://www.cbr.washington.edu/analysis/apps/atlas
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failure–time models including truncated models can be 
found in the “FAdist,” “flexsurv,” and “Vitality” R pack-
ages. Software to directly correct for tag-life in multistate 
release–recapture studies is currently unavailable and 
awaiting development.
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