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Abstract 

Background: Acoustic telemetry, for tracking fish movement histories, is multidimensional capturing both spatial 
and temporal domains. Oftentimes, analyses of such data are limited to a single domain, one domain nested within 
the other, or ad hoc approaches that simultaneously consider both domains. Sequence analysis, on the other hand, 
offers a repeatable statistical framework that uses a sequence alignment algorithm to calculate pairwise dissimilarities 
among individual movement histories and then hierarchical agglomerative clustering to identify groups of fish with 
similar movement histories. The objective of this paper is to explore how acoustic telemetry data can be fit to this 
statistical framework and used to identify commonalities in the movement histories of acoustic-tagged sea lamprey 
during upstream migration through the St. Clair-Detroit River System.

Results: Five significant clusters were identified among individual fish. Clusters represented differences in timing of 
movements (short vs long duration in the Detroit R. and Lake St. Clair); extent of upstream migration (ceased migra-
tion in Lake St. Clair, lower St. Clair R., or upper St. Clair R.), and occurrence of fallback (return to Lake St. Clair after 
ceasing migration in the St. Clair R.). Inferences about sea lamprey distribution and behavior from these results were 
similar to those reached in a previous analysis using ad-hoc analysis methods.

Conclusions: The repeatable statistical framework outlined here can be used to group sea lamprey movement his-
tories based on shared sequence characteristics (i.e., chronological order of “states” occupied). Further, this framework 
is flexible and allows researchers to define a priori the movement aspect (e.g., order, timing, duration) that is impor-
tant for identifying both common or previously undetected movement histories. As such, we do not view sequence 
analysis as a panacea but as a useful complement to other modelling approaches (i.e., exploratory tool for informing 
hypothesis development) or a stand-alone semi-quantitative method for generating a simplified, temporally and 
spatially structured view of complex acoustic telemetry data and hypothesis testing when observed patterns warrant 
further investigation.
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Background
Understanding fish movements is integral to fisher-
ies management [1], species and habitat conservation 
[2–5], and mitigating the impacts of invasive species [6, 
7]. In recent decades, passive acoustic telemetry in the 
aquatic environment (hereafter, ‘acoustic telemetry’) has 
become the principal tool for monitoring fish movements 
[8, 9] and allows for detailed insight into fish migration 
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route selection and timing [10–12], spawning behavior 
[13], factors that affect population demographics, and 
interactions with other species [14] and their environ-
ment [15, 16]. While objectives and goals vary amongst 
projects, acoustic telemetry research generally involves 
(1) attachment of an electronic tag that emits a unique 
identification code to individual fish, (2) using an array 
of stationary or mobile receivers to detect telemetered 
fish as they move through areas or regions of interest, (3) 
generating a set of geo-referenced, time-stamped detec-
tion records of each fish at each receiver location, and (4) 
interpretation of detection data to make inferences about 
individual fish movements and habitat use patterns at the 
individual and population levels [1, 17]. More recently, 
telemetry has been used to identify geographical organi-
zation and spatial structure in fish migration patterns at 
the population level that may be significant to conserva-
tion or management efforts [2, 3].

Acoustic telemetry data are time-indexed records of 
fish location, but statistical methods that enable joint 
consideration of temporal and spatial domains are rarely 
used in the analysis of acoustic telemetry detection. In 
the aquatic environment, this challenge is exacerbated 
by incomplete or patchy spatial coverage and variation in 
space use and movement timing among individuals. For 
those reasons, fish movements are often displayed graph-
ically in both domains but analyzed independently [3, 12, 
18] or with one domain nested within the other [19]. Ad 
hoc approaches (e.g., analyses developed for a specific 
task) are frequently used to simultaneously incorporate 
space and time in models of individual movements [20, 
21], and survival [4], but those methods are not easily 
repeated and have not been used to identify movement 
structure at the population level. Few studies have used 
cluster analysis to identify structure (i.e., commonalities) 
within populations [2, 22]. For example, Kessel et al. used 
supervised agglomerative clustering (i.e., detection histo-
ries were manually arranged along a similarity gradient) 
to identify migratory contingents within a population of 
lake sturgeon (Acipenser fulvescens). Their classification 
was based on an intuitively derived dissimilarity met-
ric and showed that the St. Clair Detroit River System 
(SCDRS) lake sturgeon population contained multiple 
divergent migration behaviors. We outline a statistical 
framework that expands on those approaches by using 
sequence analysis [23] and cluster analysis to identify 
common movement structures among a group of acous-
tic-tagged fish (i.e., population structure).

Sequence analysis is a reproducible statistical frame-
work for identifying patterns in temporally and spa-
tially ordered lists of objects (e.g., amino acids), states 
(e.g., employed vs unemployed), or events (e.g., mar-
riage, divorce, childbirth). Originally used for sequence 

matching in bioinformatics in the 1970s [24] and fur-
ther developed for studying life course trajectories in the 
social sciences [23], sequence analysis is a multivariate 
statistical approach that uses (1) a suite of well-studied 
metrics for estimating dissimilarity between every pair of 
ordered lists/sequences and (2) statistical separation into 
groups of common membership using multivariate tools 
(e.g., discriminant analysis, cluster analysis and multidi-
mensional scaling). Though sequence analysis methods 
have been used to address spatial questions [25], they 
have only recently been applied to animal movement [26] 
or fish telemetry data [27]. Given the ability to simultane-
ously consider multidimensional information contained 
across the entire movement history, sequence analysis 
appears to be a viable approach for identifying common 
or previously undetected movement structures at the 
population level and providing an improved understand-
ing of important aspects of fish movement ecology.

The goal of this paper is to evaluate the combined use 
of sequence and cluster analysis to identify common 
movement structures among individual fish movement 
histories. We outline a multistep process that first con-
verts detections for each individual fish into temporally 
ordered movement histories (Fig.  1a) that contain both 
the spatial and temporal aspects of the original data. 
We specifically examine the impact of (1) the tempo-
ral resolution of the input data on movement sequence 
interpretation and (2) the cost structure used to calculate 
the distance measures (i.e., how the metric for determin-
ing the difference between two sequences is calculated). 
Lastly, a statistical framework for clustering movement 
histories among acoustic-tagged sea lamprey (Petromy-
zon marinus) is presented (Fig. 1b).

Sea lamprey are invasive in the Laurentian Great 
Lakes and have been the subject of a bi-national, basin-
wide population control program since the 1950s [26, 
27]. The control program has focused largely on repro-
ductive aspects of sea lamprey biology and, as such, the 
spawning behaviors of adult sea lamprey are well docu-
mented in the Great Lakes [28]. Following an extended 
parasitic phase, adult sea lamprey detach from their host 
and migrate, sometimes 100 s of kilometers, to spawning 
tributaries during the spring [29]; though there is no evi-
dence of population-level natal philopatry. Peak spawn-
ing occurs when water temperatures reach 17.0–19.0 C 
[30, 31]. During the spawning cycle, sea lamprey stop 
feeding, their internal organs degenerate [32] and, as a 
result, both spawning and non-spawning adults die.

Despite extensive monitoring and control efforts 
throughout the Great Lakes, sea lamprey abundance in 
Lake Erie has remained above targets set by fishery man-
agers. It was hypothesized that unrecognized recruit-
ment in the SCDRS was responsible for recent increases 
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in sea lamprey abundance throughout Lake Erie. How-
ever, monitoring and control efforts in the SCDRS have 
been complicated by a lack of barriers to migration and 
a discharge that exceeds other rivers in the region by 
an order of magnitude; both factors effect trapping effi-
ciency for sea lamprey assessment and monitoring. In 
order to better understand the movement ecology of 
invasive sea lamprey, improve estimates of population 
size for control purposes, and identify novel spawn-
ing habitats in the SCDRS 27 acoustic-tagged adult sea 
lamprey were released in the lower Detroit River (Fig. 2) 
during the spring of 2014. Individual movements were 
recorded throughout the SCDRS using an array of acous-
tic receivers. An ad hoc model, that assumed the final 
spawning locations approximated a multinomial process, 
was used to conclude that spawning most likely occurred 
in the St. Clair River [33]. That study also elucidated a 
“fallback” behavior (i.e., movement downstream after 

cessation of upstream migration) in 10 individuals that 
coincided with water temperatures commensurate with 
peak spawning activity [34] and viewed as evidence that a 
spawning event had occurred. Those same data are used 
in this paper with the explicit goal of assessing the appli-
cability of sequence analysis methods to fish movement 
histories. As such, our purpose is not to revisit those 27 
adult sea lamprey movement histories within a different 
analytical framework in search of new ecological insights 
but rather use those data to provide a contextual compar-
ison; if sequence analysis is to be considered a viable tool 
for analyzing acoustic telemetry data then the method 
should, at a minimum, provide results that recapitulate 
those of Holbrook et al. [33].

Methods
Study system
The SCDRS is a 150 km long river corridor that contains 
(from upstream to downstream) the St. Clair River, Lake 
St. Clair, and the Detroit River and connects southern 
Lake Huron with the western basin of Lake Erie. Dis-
charge averages 5200  m3  s−1 [35, 36], is seasonally con-
sistent, and mostly derived from Lake Huron [37]. The 
waters of the SCDRS are oligotrophic with temperatures 
ranging from < 2 C in the winter to 19–25 C in July [38].

Fish movement data
Twelve female and 15 male adult, spawning condition sea 
lamprey (43.0–58.0 cm total length) were collected from 
the Grand River, Ohio between 11 and 13 May 2014 and 
surgically implanted with acoustic transmitters (model 
V8-4H, Vemco; Halifax, Nova Scotia, Canada) before 
being released in the lower Detroit River (Fig.  2) on 16 
May 2014 at 1343 GMT. Transmitters had an expected 
tag life of 112  days and were transmitting through the 
end of August. Each transmitter emitted a burst of coded 
acoustic pulses every 60–180 s (120 s nominal delay) and 
timestamped detections (i.e., when an acoustic pulse was 
detected) were recorded as individual fish moved through 
an acoustic telemetry array that consisted of 72 receiv-
ers (model VR2W; Vemco) distributed among 12 loca-
tions within the SCDRS (Fig.  2). Additional detections 
from 462 receivers located outside of the SCDRS were 
accessed via the Great Lakes Acoustic Telemetry Obser-
vation System (https:\\glatos.glos.us). Each receiver loca-
tion was assigned to one of seven discrete spatial units 
(hereafter ‘states’) in the SCDRS from downstream to 
upstream (Fig. 2); Lake Erie (included all receivers down-
stream of the SCDRS), lower Detroit River, upper Detroit 
River, Lake St. Clair, lower St. Clair River, upper St. Clair 
River, and Lake Huron (included all receivers upstream 
of the SCDRS). Five tributaries within the SCDRS (e.g., 
Belle, Black, Clinton, Pine, and Thames Rivers; Fig.  2), 

Fig. 1 Generalized workflow. Workflow outlining the process of 
identifying commonalities in fish movement histories from acoustic 
telemetry data. The diagram is separated into two main components; 
data processing (a) and statistical framework (b). Trapezoids represent 
data inputs, rectangles are processes or filters, diamonds are user 
decisions/considerations, and rounded rectangles are derived 
outputs. The corresponding section in manuscript (e.g., 2.2), figures, 
and appendices (e.g., S1) are shown within each structure. ‘Movement 
aspect’ is discussed at length in the penultimate paragraph in the 
discussion
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which also contained receivers, were assigned to the state 
that contained the tributary mouth for each. However, 
only one fish moved into a tributary during the study 
[33].

Filtering detection data
Potentially false detections that resulted from signal 
code collisions [39, 40] were filtered from the dataset by 
omitting all detections that were not within 3600 s (i.e., 
30 times the nominal delay) of another detection of the 
same tag code on the same receiver [41]. False detec-
tions can occur when two or more fish pass within the 
detection range of the same receiver and their acoustic 
tags transmit at the same time (i.e., tag collisions) and 
the receiver deciphers a “false” code instead of the two 
codes that collided. Such events depend on the number 
of tagged fish within detection range of a receiver and are 
generally rare; of the 7005 total detections in our study, 
only 101 (1.4%) were identified as potential false detec-
tions. Filtered detection data were further distilled into 

detection events representing time intervals in which 
each fish occupied each state. Each detection event was 
comprised of only the first and last detections of an unin-
terrupted series of detections for each fish within a state. 
In this case, an interruption only occurred when an indi-
vidual was detected in a different state. Thus, events were 
separated by periods of transition between states when 
the state was not known.

Converting detection data to movement history sequences
Filtered detection events were converted to move-
ment history sequences containing the state (e.g., Lower 
Detroit R., Lake St. Clair, etc.; see 2.2 Fish Movement 
Data for list of possible states) of each fish in each 1-h 
time interval throughout the study period. Each sequence 
started on 16 May at 1300 GMT coincident with the 
release of acoustic-tagged fish into the lower Detroit 
River and ended 1 July 1300 GMT. The 1 July cutoff for 
all movement histories was based on the observed final 
detection events for all fish that ranged from 22 May 

Fig. 2 Map of study area. St. Clair River Detroit River system with the acoustic telemetry receiver configuration, release location, and associated river 
states. Inset map indicates the location of the St. Clair River Detroit River System within the Great Lakes basin
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to 30 June with 20 of the 27 final detections occurring 
after 15 June. Each fish was assigned to a dominant state 
occupied during that time interval based on the pro-
portion of time spent in each state (i.e., state-specific 
residence time/total time for that interval). This was nec-
essary when an individual transitioned from one state to 
another. During periods when fish were not detected (i.e., 
in portions of the SCDRS between states not covered by 
receivers), that last state occupied was carried forward 
until the next detection and transitions into a new state 
were never imputed. Movement history sequences were 
stored in a matrix containing the chronologically ordered 
state occupation for each individual fish (i.e., one row for 
each fish and one column for each time interval).

The time resolution used in movement history 
sequences is a critical decision because overly coarse 
resolutions can mask ecologically significant state 
changes and overly fine resolutions add unnecessary 
computational and interpretational complexity. The time 
resolution used in this analysis (1 h) was determined 
by comparing sequences constructed at 1-, 6-, 12-, 24-, 
and 96-h intervals to identify the temporal resolution 
that best preserved the multidimensional information 
contained in the filtered detection events. This pro-
cess resulted in five movement history matrices from 
27 × 1104, 27 × 184, 27 × 92, 27 × 46, and 27 × 12 for the 
1-, 6-, 12-, 24-, and 96-h intervals, respectively (Fig.  3). 
Resulting movement histories showed marked differ-
ences in the range of habitats occupied by individual 
sea lamprey. Though the St. Clair River was a prominent 
feature at all resolutions, the 1-h resolution showed the 
greatest diversity in movement histories (Fig.  3b) and 
there was less apparent information at the coarsest tem-
poral resolution (Fig.  3f ). These results were corrobo-
rated by hierarchical agglomerative clustering which was 
used to evaluate the degree of similarity among the five 
movement sequences for each fish, individually (Addi-
tional File 1; Fig. 1). Further, the proportion of movement 
histories that required imputation ranged from 8 to 88% 
with higher resolution data (i.e., 1  h intervals) requir-
ing more imputation than coarser resolutions (Table  1). 
However, a multisample equality of proportions test, with 
continuity correction, indicated that the mean propor-
tion of imputed movement histories did not differ among 
the five time intervals (χ2 = 1.107, df = 4, p = 0.89). As a 
result, all analyses are based on the sea lamprey move-
ment histories constructed at 1-h intervals (Fig. 3b).

Calculating dissimilarity
Sequence analysis methods are predicated on quanti-
fying the extent to which each pair of movement histo-
ries are dissimilar. Dissimilarity, as defined in this paper, 
is the “cost” needed to convert one movement history 

sequence into another movement history sequence (i.e., 
edit distance). Conversion can be accomplished through 
two operations using optimal matching (OM) within the 
edit distance framework: substitutions (i.e., changing the 
observed state in one sequence to match the observed 
state at the same position in the other sequence) and 
insertion-deletion (indel; i.e., inserting a new observation 
into one sequence or deleting an observation from the 
other sequence). There are numerous cost regimes under 
the umbrella of the edit distance framework that differ 
by the way in which substitution and indel costs are cal-
culated, but generally, for a given cost structure (i.e., dis-
similarity measure) an algorithm is used to identify the 
lowest-cost set of operations needed to produce a match 
from two sequences. Studer and Ritschard [42] provide 
an extensive review of the most commonly used cost 
regimes for calculating dissimilarity measures (including 
Euclidean and Chi squared distances) and the scenarios 
in which each approach is best suited. For this analysis, 
we sought a cost regime that met triangle inequality (i.e., 
ensured coherence between computed dissimilarities) 
and reflected ecological reality (i.e., did not allow 2nd 
order or higher movements (skipped states) and did not 
allow changes to the length of the sequences).

The cost regime used to calculate dissimilarities among 
movement history sequences in this analysis (custom 
cost regime, described below) was selected among five 
candidate cost regimes (Table  2):: (1) substitutions and 
indel operations had the same cost (i.e., Levenshtein dis-
tance), (2) only indel operations were allowed (i.e., Lev-
enshtein II distance), (3) only substitutions were allowed 
(i.e., Hamming distance), (4) a data driven cost regime, 
and (5) a custom cost regime based on state attributes 
(i.e., connectivity). All of the cost regimes are variations 
of the ‘optimal matching’ method in the ‘seqdist’ function 
of the R package “TraMineR”. For Levenshtein distances, 
the costs of substitutions and indels were both equal to 
one. Thus, Levenshtein distances were equivalent to the 
minimum number of operations required to transform 
one sequence into another. For Levenshtein II distances, 
substitutions were effectively disallowed by setting the 
cost of each substitution eight times larger than the cost 
of an indel. Similarly, for Hamming distances, indels were 
effectively disallowed by setting the cost of each indel 
three times larger than the cost of a substitution. The 
data driven cost regime was based on the observed prob-
abilities of all sea lamprey transitioning from one state to 
another (i.e., transition rates; Table 3a). Data driven sub-
stitution costs (SC) were calculated as follows

SC(i,j) = cval − TR(i,j)
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Fig. 3 Movement sequences at different resolutions. Detection events displaying the a raw detection data for all acoustic-tagged sea lamprey 
(n = 27) in the St. Clair River Detroit River System. Movement histories constructed at b 1-, c 6-, d 12-, e 24-, and f 96-h intervals from the release date 
(16 May 2014) in the Lower Detroit River (DRL) until 1 July 2014. Each tick on the x-axis represents 4 days
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where TR is the observed transition rate from the origin 
state i to the arrival state j for all fish combined (Table 3a) 
and cval is a scalar that sets the base value for all calcula-
tions equal to 2 [59]. Substitution costs ranged from 1.001 
to 1.023 (when fish remained in the same state) to 2 when 
fish were not observed transitioning between two states 
(Table 3b). Data driven indel operations were assigned a 
value of 1.05 [59]. Lastly, we created a custom cost regime 
based on the likelihood of 2nd order or higher move-
ments occurring in the SCDRS. Despite being observed 
in the data due to missed detections (Fig. 4, Table 2), sec-
ond order or higher order movements (i.e., movements 
between non-adjacent states) were physically impossible. 
Substitutions between adjacent states (e.g., Lower Detroit 
R. and Upper Detroit R.) were assigned a cost of 1 while 
substitutions between non-adjacent states (e.g., Upper 
Detroit R. to Lower St. Clair R.) were assigned a cost of 2. 

Individual indel operations had a cost of 0.95. However, 
to maintain equal lengths among the 27 movement his-
tories (i.e., 1104 hourly observations), any indel operation 
was necessarily accompanied by another indel; thus the 
cumulative cost of an indel was 1.90.

To compare cost structures, we calculated operation 
summaries for the alignment of each movement his-
tory sequence to a reference sequence. The last sequence 
in the data set (Fish ID = “027”) was arbitrarily selected 
as the reference sequence. The operation summaries 
included number of substitutions, number of indels, 
the total number of operations, number of 2nd order 
or higher movements needed to align sequences, and 
change in sequence length [as a proportion of the original 
length (n = 1104)]. The Levenshtein and Levenshtein II 
cost regimes resulted in the fewest and most total opera-
tions, respectively (Table  3). The Hamming and custom 
cost regimes were the only approaches that resulted in no 
2nd order or higher movements; though the former did 
result in a 35% (378 h or 16 days) increase in the length 
of movement histories. The data driven approach and 
the custom cost regime performed similarly with the pri-
mary difference being a single alignment that required 
a 2nd order or higher movement using the data driven 
approach (Table 3). The custom cost regime was used in 
analyses because it minimized substitutions correspond-
ing to 2nd order or higher movements and minimized 
changes to the length of the movement histories through 
indel operations.

Identifying common movement histories
Hierarchical agglomerative clustering, based on dissim-
ilarities among movement history sequences, was used 
to identify common movement histories representative 
of groups of fish. Clusters were identified using Ward’s 
 D2 clustering criterion and uncertainty was evaluated 
using multiscale bootstrap resampling (nboot = 1000) 
which provided approximately unbiased p-values [43]. 
Significant clusters (α = 0.05) were further examined by 
extracting the representative set of movement history 
sequences from each cluster (i.e., identifying the move-
ment history sequences that best defined each cluster) 
[44]. Each representative set of sequences was identi-
fied using a two-step process. In the first step, a first-
order Markov model is used to estimate the sequence 
likelihood (i.e., the product of the probability that each 
successive state is expected to occur at a given time 
step) and the resulting probability was used to order 
all sequences within a cluster. Second, redundant (i.e., 
similar) sequences were identified as those (1) within 
a neighborhood radius of 25% of the theoretical maxi-
mum dissimilarity (i.e., the dissimilarity value of the 
two sequences in each cluster group that are maximally 

Table 1 Proportion of movement histories imputed

Proportion of individual movement histories that were imputed at 1-, 6-, 12-, 24-, 
and 96-h intervals. Total number of time intervals indicated by n values

Fish 1 h 6 h 12 h 24 h 96 h

001 0.88 0.86 0.82 0.81 0.83

002 0.86 0.84 0.80 0.79 0.83

003 0.87 0.88 0.85 0.85 0.67

004 0.11 0.14 0.12 0.13 0.08

005 0.34 0.36 0.34 0.35 0.25

006 0.68 0.69 0.68 0.67 0.67

007 0.24 0.26 0.25 0.26 0.17

008 0.30 0.31 0.28 0.26 0.17

009 0.81 0.80 0.75 0.72 0.58

010 0.88 0.88 0.84 0.80 0.58

011 0.39 0.39 0.35 0.35 0.25

012 0.48 0.49 0.46 0.46 0.33

013 0.33 0.35 0.31 0.30 0.17

014 0.80 0.81 0.77 0.76 0.58

015 0.81 0.80 0.79 0.77 0.75

016 0.84 0.85 0.81 0.83 0.75

017 0.86 0.87 0.84 0.83 0.83

018 0.69 0.69 0.66 0.63 0.58

019 0.85 0.86 0.84 0.83 0.83

020 0.47 0.49 0.45 0.43 0.33

021 0.27 0.29 0.27 0.26 0.17

022 0.31 0.32 0.29 0.28 0.17

023 0.79 0.79 0.76 0.76 0.67

024 0.32 0.33 0.30 0.28 0.17

025 0.84 0.84 0.82 0.83 0.67

026 0.84 0.85 0.83 0.85 0.75

027 0.86 0.86 0.84 0.85 0.67

Mean = 0.62 0.63 0.60 0.59 0.50

S.E. = 0.05 0.05 0.05 0.05 0.05

n = 1104 184 92 46 12
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different) and (2) that cover a minimum of 50% of the 
of the sequences in the cluster [44]). This process pro-
gressed iteratively through every candidate sequence, 
starting with the first sequence (i.e., highest probability 
of occurrence from previous step; centroid of the clus-
ter). Two measures of quality were used to indicate the 
amount of spread among sequences within each clus-
ter (i.e., ‘within representative sequence spread’) and 
the mean distance of the representative sequence to the 
cluster centroid (i.e., ‘mean distance’) [44]. All analyses 
were conducted in the R-environment (version 3.4.3; 
[45]). Detection data were processed using the ‘glatos’ 
package in R. The R package ‘TraMineR’ was used for 

developing dissimilarity measures among movement 
sequences [46] and cluster analyses were done using 
the ‘pvclust’ function in the ‘pvclust’ package [43].

Results
All 27 acoustic-tagged sea lamprey were detected in the 
SCDRS receiver array resulting in 6904 individual detec-
tions. Detections were further collated into 1072 dis-
crete detection events (Fig.  3a) that ultimately formed 
27 detection histories ranging in length from short, dis-
continuous sequences that required numerous imputa-
tions (e.g., individuals ‘001’, ‘002’, and ‘016’; Fig.  3a), to 
longer, discontinuous sequences that required moderate 

Table 2 Summary of all five cost regimes

Cost structure and number of operation (mean ± standard error) summary of each of the five cost regimes. Histories with 2nd order is the number of movement 
histories that required second order substitutions for alignment. Proportion increase is the proportional length change for each sequence due to an indel operation

Arrival state LE DRL DRU LSC SCL SCL LH

Origin state

 a

  LH 0 0 0 0 0 0 0

  SCU 0 0 0 0 0.003 0.999 0

  SCL 0 0 0.001 0.030 0.989 0.001 0

  LSC 0 0.001 0.021 0.977 0.008 0 0

  DRU 0 0.018 0.977 0.003 0 0 0

  DRL 0 0.981 0.001 0 0 0 0

  LE 0 0 0 0 0 0 0

 b

  LH 2 2 2 2 2 2 2

  SCU 2 2 2 2 1.997 1.001 2

  SCL 2 2 1.999 1.97 1.011 1.999 2

  LSC 2 1.999 1.979 1.023 1.992 2 2

  DRU 2 1.982 1.023 1.997 2 2 2

  DRL 2 1.019 1.999 2 2 2 2

  LE 2 2 2 2 2 2 2

Table 3 Observed transition rates and state specific substitution costs for data-driven cost regime

Observed transition rates (a) for 27 sea lamprey in the Saint Clair Detroit River system. Transition rates reflect movement from the origin state to the arrival state and 
occur in both upstream and downstream directions. Substitution costs (b) based on the observed transition rates for 27 sea lamprey in the Saint Clair Detroit River 
system. From downstream to upstream, LE Lake Erie, DRL Lower Detroit River, DRU Upper Detroit River, LSC Lake St. Clair, SCL Lower St. Clair River, SCU Upper St. Clair 
River, and LH Lake Huron

Regime Cost structure Operations 2nd order Percent increase

Substitution Indel Substitution Indel Total

Levenshtein 1 1 378.5 ± 338.1 78.5 ± 104.1 457.1 ± 360.7 12 0.04 ± 0.04

Levenshtein II 2 0.25 0.0 779.6 + 672.3 779.6 + 672.3 0.4 + 0.3

Hamming 1 3 428.0 + 347.5 0.0 428.0 + 347.5 23 0.01 + 0.04

Data driven S2a 1.05 302.8 + 302.8 178.3 + 118.3 481.0 + 371.5 1 0.08 + 0.05

Theory driven Custom Matrix 0.95 300.6 + 305.1 180.8 + 128.8 481.9 + 372.4 0.08 + 0.06
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imputation (e.g., individuals ‘011’, ‘012’, and ‘018’; Fig. 3a), 
to long, detailed sequences that needed comparatively 
less imputation (e.g., individuals ‘004’, ‘007’, and ‘021’; 
Fig. 3a).

Seventy-six upstream transitions were observed 
(Fig.  4). Only 2.6% of upstream transitions (n = 2) were 
second-order movements, including a transition from the 
lower Detroit River to Lake St. Clair (i.e., missed in the 
upper Detroit River; ~ 220  h from release) and a transi-
tion from the upper Detroit River to the lower St. Clair 
River (i.e., missed in Lake St. Clair; ~ 380 h from release; 
Fig. 4). Fourteen downstream transitions were observed 
(Figs. 3b, 4), representing 12 distinct fallback events from 

11 individuals. All downstream transitions were first-
order movements. Three fallback events (3 fish) were 
initiated in Lake St. Clair and, in all three cases, the fish 
continued upstream through Lake St. Clair after the ini-
tial fallback (individuals ‘003’, ‘009’, and ‘013’ in Fig. 3b). 
Nine fallback events (9 fish) were initiated in the St. Clair 
River (8 lower St. Clair R.; 1 upper St. Clair R.) and eight 
of those fallback events represented the final movement 
of the fish, terminating in Lake St. Clair. One fallback 
event initiated in the St. Clair River was followed by con-
tinued upstream migration after detection in Lake St. 
Clair.

Fig. 4 Time-varying transition frequencies. Transition frequencies for sea lamprey (n = 27) in the St. Clair River Detroit River system. The color scale 
grades from blue (1 individual) to red (27 individuals) and each cell represents the number of fish, at 1 h intervals, remaining in the same state, 
moving upstream (rug plot above the same state transition lines), or moving downstream (rug plot below the same state transition lines). States are 
ordered from downstream to upstream; LE Lake Erie, DRL Lower Detroit R., DRU Upper Detroit R., LSC L. St. Clair, SCL Lower St. Clair R., SCU Upper St. 
Clair R., and LH Lake Huron. All fish were released on May 16, 2014 in the Lower Detroit River (DRL) and each tick represents 4 days
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Twenty-two of the 27 (81%) acoustic-tagged sea lam-
prey entered the St. Clair River, including 20 individu-
als that ceased upstream migration in the lower St. Clair 
River and two individuals that ceased migration in the 
upper St. Clair River (Figs.  3b, 4). Further, all 22 indi-
viduals that reached the St. Clair River arrived there by 
10 June (576  h post release; Fig.  4) and remained there 
until 15 June when fish began exhibiting fallback behav-
ior. Five sea lamprey ceased upstream migration in Lake 
St. Clair (Figs. 3b, 4) and no sea lamprey were detected in 
the Detroit river after 2 June 2014 (392 h after release). 
Some fish moved upstream quickly with advancement 
to Lake St. Clair, the lower St. Clair River, and the upper 
St. Clair River occurring in as little as 44 (Fig.  3b; indi-
vidual = ‘002’), 99 (Fig.  3b; individual = ‘019’), and 153 
(Fig. 3b; individual = ‘019’) hours, respectively.

Dissimilarity values ranged from 13.0 to 1859.2 for 
the two movement history sequences that were most 
(individuals ‘005’ and ‘016’) and least (individuals ‘002’ 
and ‘019’) similar, respectively (Fig.  5a). Five signifi-
cant clusters were identified among the 27 movement 
sequences (Fig.  5b). Cluster 1 was defined by three 

fish that moved quickly through the Detroit River and 
Lake St. Clair, ceased upstream migration in the lower 
St. Clair River, and then “fell back” to Lake St. Clair 
(Fig. 6). Fish in Cluster 2 (n = 3) also ceased upstream 
migration in the lower St. Clair River but moved more 
slowly (2–3  weeks) through the Detroit River and 
Lake St. Clair. Fallback behavior was only apparent in 
one fish from this group (Fig.  6). The largest group, 
Cluster 3, contained 13 fish that moved through the 
Detroit River and Lake St. Clair in 2 weeks followed by 
extended periods in the lower St. Clair River. Despite 
the diversity of representative movement sequences 
and relatively small sample size, within cluster vari-
ability was small relative to among-cluster variability, 
indicating that the sequences were more similar within 
clusters than among clusters. Fish ‘009’ was the lone 
exception due to multiple fallbacks during its migra-
tion (Fig. 3b). Cluster 4 was comprised of two fish that 
ceased upstream migration in the upper St. Clair River 
(‘018’ and ‘019; Figs.  3b; 5b). The final cluster, Cluster 
5, contained three representative sequences (Fig.  6) 
for the six individuals that ceased upstream migration 

Fig. 5 Dissimilarity and Cluster Dendrogram. Dissimilarity matrix a calculated using optimal matching based on the custom cost regime. 
Colors grade from warm to cold for the most similar and least similar movement histories, respectively. Agglomerative clustering dendrogram b 
comparing movement sequences among the 27 individual fish. Gray boxes indicate significant clusters at α = 0.05 as determined by bootstrap 
resampling
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in Lake St. Clair. Like the fish in the first three clus-
ters, these individuals had highly variable transit times 
through the Detroit River system.

Discussion
Sequence analysis methods allowed us to construct 
individual-level movement histories using more objec-
tive, repeatable methods than commonly-used ad-hoc 
alternatives, and to further use individual movement 
history sequences in a flexible, statistical framework 
to identify distinct movement patterns representing 
groups of individuals with common movement charac-
teristics. Importantly, results from our analysis of move-
ment history sequences (this paper) are consistent with 
a previous analysis of the same dataset [33] and both 

approaches lead to the conclusion that the lower St. Clair 
River was the most likely spawning area for sea lam-
prey in the SCDRS. Rather than reiterate the ecological 
interpretations of these movement patterns detailed in 
Holbrook et  al. [33], we focus here on critical decisions 
in the sequence analysis workflow (e.g., spatial state defi-
nition, sequence time resolution, and dissimilarity cost 
regime) that are specifically relevant to fish movement 
applications.

Movement history sequences are a convenient data 
storage format for consistent and direct summaries of 
space use by individual fish, but require spatial state defi-
nitions and time resolutions that are ecologically-relevant 
and allow accurate imputation of missing data points. 
Missing data are frequently encountered in acoustic 

Fig. 6 Representative movement histories. Movement histories for sea lamprey in the St. Clair River Detroit River system grouped by agglomerative 
cluster analysis in Fig. 5b. Representative sequences were selected using the sequence probability and 50% minimum coverage criteria. Movement 
histories (horizontal bars) are plotted from the bottom-up according to their representativeness with the bottom bar being the centroid for that 
cluster (i.e., most representative). Bar thickness is proportional to the number of individuals assigned to that sequence. The symbols on the top, 
correspond to the symbols on the left of each representative movement history, indicate the a within representative sequence spread and b the 
mean distance to the cluster centroid
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telemetry data due to numerous reasons outlined previ-
ously (e.g., imperfect receiver coverage, missed detec-
tions, etc.). Last observation carried forward (LOCF) is 
a popular state imputation method in medical and clini-
cal research due its simplicity, but its use has also been 
criticized for apparent subjectivity [47, 48]. Such criti-
cisms are alleviated in well-designed telemetry studies 
by ensuring that receivers adequately delineate states 
and reliably detect fish moving among states. Further, 
the assumption that a fish remained in a ‘state’ between 
detection events was likely accurate for our study given 
the closed dynamics of the SCDRS. Imputation methods 
should be carefully considered in open systems like lakes, 
estuaries, and oceans and may not be appropriate unless 
the system is covered by an extensive receiver array or 
data support broad state classification schemes. In such 
cases, missing data points may be filled using statistical 
models to interpolate an individual’s position based on 
detection events, environmental variables, and fish swim-
ming speeds [49–52]. It is also worth noting that some 
sequence alignment algorithms are capable of handling 
missing data points and sequences with unequal lengths 
[42] and can be further tuned using creative cost struc-
tures to inform missing values [53].

Identifying the appropriate temporal resolution for 
analyzing fish movements is a key consideration when 
using sequence analysis and should be explored a priori. 
Movement sequences constructed at multiple temporal 
scales resulted in highly variable data granularity that 
influenced our interpretation of fish movement patterns 
considerably. For example, while the 6 and 12  h inter-
vals isolate peak movement times (i.e., night time) for 
sea lamprey from times with reduced activity [33] and 
reduce the number of imputed data points, the intervals 
were too broad and important movement patterns were 
not observed. Conversely, the 1 h interval captured those 
important features but resulted in 6 to 12 times as many 
imputations, even though the proportions of imputed 
data were not different. Ultimately, there is a trade-off 
between limiting the number of imputed points and the 
amount of information lost at coarse time scales.

Selecting the appropriate algorithm for deriving dis-
similarity measures is perhaps the most important step 
in identifying movement typologies that represent group-
level movement and space use characteristics. Though a 
review of the methods is beyond the scope of this paper 
(but see [42]), it is important to note that approaches 
other than those used here (including Euclidean and Chi 
square distances) are available for calculating pairwise 
similarities (based on common features) and dissimilari-
ties between movement sequences. For example, Kessel 
et al. [2] used the proportion of time intervals in which 
the state differed between two individuals (essentially 

‘Hamming’ distance; [54]) to identify migratory contin-
gents among lake sturgeon. Hamming distance is an intu-
itive choice because it captures both spatial and temporal 
dynamics [55]. However, by weighting all time intervals 
equally, Hamming distance can fail to recognize ecolog-
ically-important differences that occur over short time 
scales (e.g., spawning migrations) and favor more pro-
tracted residency events.

Understanding which dissimilarity measures are best 
suited for specific ecological questions is also critical 
when using sequence analysis to study fish movements. 
While the number of possible algorithms and param-
eterizations can be overwhelming [42], sequence analysis 
is a flexible statistical framework that can be used to ask 
a number of questions. While we chose OM parameters 
that focused on the order of state transitions, we could 
have adopted many other approaches. For example, we 
could have used Levenshtein II, Euclidean distance with 
the number of periods (K) set to 2, or OMspell with a 
high expansion cost to group movement histories based 
on the duration of state occupancy. Likewise, clusters 
could have been based on the timing of state transitions 
by using dynamic Hamming or Euclidean distance with 
K equal to sequence length [56]. The distinction among 
the various algorithms is not arbitrary and selecting 
appropriate method depends largely on the movement 
aspect or question of interest [42]. Within the context 
of fish movement ecology, we interpret those aspects as 
(1) experienced states—total count of states occupied, (2) 
sequencing—the order of distinct successive states occu-
pied by an individual, (3) distribution—total time spent 
in each state during the movement sequence, (4) timing—
age, date, or time of day when an individual transitions 
into a state of interest, (5) duration—length of time indi-
viduals spend in the same state, and (6) spacing—elapsed 
time that occurs while transitioning between two states 
of interest.

Conclusions
Sequence analysis offers a flexible statistical framework 
for studying individual- and group-level fish movement 
histories, behavioral shifts, and habitat use that can be 
implemented in a reproducible manner using widely 
accessible software. Beyond our focus on finding com-
monalities in fish movement histories, additional sta-
tistical approaches have been developed specifically for 
analyzing sequential data such as fish movement histo-
ries [57–59]. Likewise, the dissimilarity measures derived 
from alignment algorithms such as OM are analogous to 
those found in community ecology and could be used to 
ask increasingly complex questions regarding fish move-
ment patterns. Sequence analysis is not intended as a 
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panacea or as an alternative to spatially explicit move-
ment models that allow for more rigorous prediction 
of habitat use [55]. Rather, it may be viewed as either a 
complement to those models (i.e., exploratory tool for 
informing hypothesis development) or a stand-alone 
semi-quantitative method for generating a simplified, 
temporally and spatially structured view of complex 
acoustic telemetry data and hypothesis testing when 
observed patterns warrant further investigation.
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