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Abstract 

Pinnipeds spend large portions of their lives at sea, submerged, or hauled‑out on land, often on remote off‑shore 
islands. This fundamentally limits access by researchers to critical parts of pinniped life history and has spurred the 
development and implementation of a variety of externally attached telemetry devices (ETDs) to collect informa‑
tion about movement patterns, physiology and ecology of marine animals when they cannot be directly observed. 
ETDs are less invasive and easier to apply than implanted internal devices, making them more widely used. However, 
ETDs have limited retention times and their use may result in negative short‑ and long‑term consequences includ‑
ing capture myopathy, impacts to energetics, behavior, and entanglement risk. We identify 15 best practice recom‑
mendations for the use of ETDs with pinnipeds that address experimental justification, animal capture, tag design, 
tag attachment, effects assessments, preparation, and reporting. Continued improvement of best practices is critical 
within the framework of the Three Rs (Reduction, Refinement, Replacement); these best practice recommendations 
provide current guidance to mitigate known potential negative outcomes for individuals and local populations. These 
recommendations were developed specifically for pinnipeds; however, they may also be applicable to studies of other 
marine taxa. We conclude with four desired future directions for the use of ETDs in technology development, valida‑
tion studies, experimental designs and data sharing.
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Introduction
Externally affixed telemetry devices (ETDs) have been 
used very effectively to monitor movement, behavior 
and physiology of highly mobile vertebrates since the 
1960s [21, 50, 59, 71]. This approach has been especially 
useful for marine vertebrates—pinnipeds in particu-
lar—that often spend a considerable amount of time in 
remote locations or submerged [44, 53, 63, 78]. Initial 
device designs were relatively large, and used mechani-
cal or opto-mechanical transducers and recording media. 

The original ‘Kooyman’ Time–Depth Recorder (TDR) 
was based on a modified, 60-min wind-up kitchen timer 
integrated with a Bourdon tube pressure transducer con-
nected to a stylus that scratched into smoked glass. This 
entire assembly was encased in a pressure housing, and 
with a mass of 1.5 kg, it could only be used on very large 
animals, such as Weddell seals (Leptonychotes weddellii) 
[58]. The next-generation TDRs developed by J. Billups 
(Meer Instruments, Palomar Mountain, CA, USA) used 
photographic film as a medium rotated by a battery-
driven motor inside of a 20-cm-long tubular housing of 
5.3-cm diameter, reducing the total mass to 0.5 kg [37], 
Fig. 1a). This allowed for use on smaller pinnipeds, such 
as Galápagos fur seals (Arctocephalus galápagoensis). The 

Open Access

Animal Biotelemetry

*Correspondence:  markush@alaskasealife.org
1 Alaska SeaLife Center, 301 Railway Avenue, Seward, AK 99664‑1329, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6178-4935
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40317-019-0182-6&domain=pdf


Page 2 of 17Horning et al. Anim Biotelemetry            (2019) 7:20 

Fig. 1 Examples of improvements in ETD attachment methods over time. The attachment methods allow different placements and attachment 
durations, and may have different impacts on study animals (Recommendations # 9 and 10). a Adult female Antarctic fur seal on Bird Island, South 
Georgia. The female is carrying an opto‑mechanical depth recorder (Meer Instruments, Palomar Mountain, CA, USA; red cylinder, 210 × 50 mm, 
700 g) and a VHF beacon (Telonics Inc., Mesa, AZ, USA, clear epoxy cylinder, approx. 100 × 30 mm, 100 g) that are attached using a harness of nylon 
webbing worn by the animal, illustrating older tag technology and attachment methods. This was one of the early investigations into pinniped 
diving behavior and its relationship to prey distribution from the late 1970s through the mid 1980s [23]. Photo © DP Costa, 1983. b Juvenile 
California sea lion at Año Nuevo Island in 2016, instrumented with a SPOT6 Argos transmitter (72 × 54 × 24 mm, 119 g, Wildlife Computers) attached 
with Loctite Quickset™ 10‑min, 2‑component Epoxy (Product # IDH1289278, Henkel Corp., Düsseldorf, Germany). This epoxy cures within about 
8–12 min at ambient temperatures between 10 and 18 °C, while generating comparably little reaction heat if sufficiently thin layers are used. Care 
needs to be taken with larger devices that may trap reaction heat between fur and tag. In warmer temperatures, frozen gel‑packs can be used to 
slow reaction and cool epoxy and tags (Recommendation # 10). The back‑mounted attachment shown here typically results in fewer Argos uplinks 
at sea, and lower quality location estimates, than head‑mounted transmitters shown in Figs. 3b and 5b. This animal was part of a study examining 
the movement and diving behavior of juvenile California sea lions, an age class about which very little is known due to their transient state and 
the resulting difficulty in recapturing them [77]. These animals were instrumented opportunistically during handling for a project studying the 
occurrence Leptospirosis in the Año Nuevo population (Recommendations # 5 and 6). The wet pelage across the shoulders and fore‑flippers is from 
water and ice used to keep the animal cool (Recommendation # 7) and slow exothermic epoxy curing. Photo © PW Robinson, 2015, NMFS Permit 
#17952. c Dorsal and plantar (inset) views of a SPOT Argos transmitter (Wildlife Computers) attached to the interdigital webbing on the hind‑flipper 
of a spotted seal. Photos © PL Boveng, 2016, NMFS Permit #19309. d Nylon mesh is superficially glued to the fur of an adult Weddell seal using 
Devcon type 14265 5‑minute two‑component epoxy (ITW Performance Polymers, Chicago, IL, USA), study details are given in [49]. In the study 
area in McMurdo Sound, no natural predators are present to possibly cue in on increased visibility that could result from the white patch. In areas 
with predators, dark mesh should be used. The Devcon epoxy is quicker setting than the Loctite Quickset epoxy referenced in Panel B, making it 
more suitable in colder climates. At lower temperatures, providing additional heat via hot‑packs (e.g., snap to heat gel packs) may be required to 
enable curing. Otherwise epoxy may simply freeze, giving the appearance of curing, but without adhering power. Channels formed from heat 
shrink tubing allow the subsequent attachment of ETDs via plastic or metal zip ties. This method allows for easy device removal by cutting ties, and 
the mesh base remains on the animal and is shed during the annual molt. Plastic ties work well in temperate climates, but become brittle in cold 
climates where metal ties provide more secure tag retention. For stainless steel ties, using retained‑tension ties prevents loosening that occurs in 
standard ball‑lock metal ties on rigid backing. Some researchers wrap tags in self‑fusing rubber splicing tape (e.g., 3‑M Temflex™ type 2155) that can 
then be glued to a mesh base, sometimes in combination with zip ties, for quick removal by cutting ties and tape. Photo © J Skinner, 2012, NMFS 
Permit #15748
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advent of integrated solid-state electronic circuitry in the 
early 1980s led to progressive miniaturization and to the 
evolution of sophisticated devices with multiple sensors 
and on-board signal processing (e.g., [39, 47]. Modern 
electronic ETDs come in many shapes, sizes, densities 
and masses (Fig. 2). Some of the smallest devices measure 
less than 10 mm in diameter and 30 mm in length, and 
have a mass in air under 30 g, about 50 times less than 
the original Kooyman TDR.

Early devices functioned as archival data loggers that 
required recapturing animals to recover devices and gain 
access to recorded data. Recaptures were often facilitated 
through the use of VHF radio-beacons to monitor ani-
mal movement. In subsequent years, data telemetry sys-
tems have made it possible to remotely recover the data, 
though battery power and bandwidth limit the quantity 
of data that can be obtained (e.g., higher sampling rates, 
higher-resolution data, or data from additional sensors) 

unless the instrument is recovered. The Argos satellite 
location system1 was initially developed for global posi-
tioning of mobile transmitter platforms, but in later years 
was enhanced with the ability to receive limited amounts 
of data encoded in transmission bursts [107]. GPS-ena-
bled animal-borne receivers greatly improved on the lim-
ited positional accuracy of the Argos system, but require 
device recovery, or a combination with Argos or mobile 
telephony (GSM) transmitters for data access [22, 75].

In the 1960s and 1970s, the comparably large ETDs 
were often attached through removable full-body har-
nesses (see Fig.  1a, [37], or sometimes in combination 
with hog-rings to anchor small harnesses to the skin 
[58, 61]. In a variation, anklets (ankle harnesses) were 
used on large pinnipeds such as elephant and Weddell 
seals (Mirounga spp., Leptonychotes weddellii) [18, 68]. 

Fig. 2 Examples of recent and contemporary ETDs. a CTD‑SRDL archival Argos transmitter configured with CTD and Fluorometry sensors (SMRU 
Instrumentation, St. Andrews, United Kingdom; 105 × 72 × 60 mm, 630 g). Mid‑2000s to present. Photo © by DP Costa. b Archival data logger with 
tri‑axial jaw accelerometer and light level sensor designed for detecting bioluminescence (Little Leonardo Corp., Tokyo, Japan; 20 × 73 mm, 48 g). 
2015 to present. Photo © DP Costa. c ARCGEO‑13T archival data logger with temperature, depth sensors and geo‑location via light levels (Lotek 
Wireless, St. John’s, Newfoundland, Canada; 13 × 57 mm, 12 g). Early 2000s to present. Photo © DP Costa. d Three generations of Argos‑compatible 
satellite data transmitters commonly used as ETDs on pinnipeds made by Wildlife Computers Inc. (Redmond, WA, USA). SDR‑T16 devices (top 
device in picture) were available through the late 1990s, measured up to 135 × 45 × 37 mm and had a mass of up to 330 g (depending on battery 
configurations). SPOT devices (middle) were introduced in the early 2000s. They measure up to 90 × 55 × 30 mm and have a mass up to 120 g. A 
different configuration for a SPOT device introduced in the mid‑2000s is shown at the bottom of the image above. This form factor with smaller 
batteries measures 85 × 12 × 12 mm and has a mass of about 23 g. Antenna design has also changed through these years, leading to smaller and 
thinner yet longer lasting antennae. Photo © M Horning

1 http://www.argos -syste m.org/ (retrieved 5/5/2019).

http://www.argos-system.org/


Page 4 of 17Horning et al. Anim Biotelemetry            (2019) 7:20 

The introduction of fast-curing adhesives (epoxies, ure-
thanes, cyanoacrylates) allowed for the quick attachment 
of ETDs to the pelage of pinnipeds [29], Figs. 1b, d, 3) and 
represented a significant refinement by eliminating the 
need for subdermal anchors or harnesses, thus substan-
tially reducing—though likely never completely eliminat-
ing—hydrodynamic drag [43, 111]. Electrical casting and 
embedding resins—sometimes in the form of syntactic 
resin matrices (syntactic foam)—enabled the elimination 
of large, heavy pressure housings, supporting significant 
reduction in device sizes. Miniaturization was further 
enabled by improved electronics and battery designs, 
resulting in some contemporary devices that are small 
enough to attach in the manner of interdigital ID tags 
(Fig. 1c, [6, 64]).

The use of adhesives to attach ETDs to the pelage of 
pinnipeds—while a refinement—limits the retention 
of the ETD to the period prior to the annual molt [31]. 
Other limiting factors to device longevity include battery 
capacity and size constraints. Larger devices with greater 
battery capacity increase hydrodynamic drag and thus 
locomotor cost and energy expenditure [72, 98], in addi-
tion to increasing the risk of entanglement, and visibility. 
Accessibility of animals for captures and ETD attach-
ment also remains spatially and temporally constrained. 
Frequently, females and their offspring are captured in 
breeding areas during the reproductive season as they are 
the most accessible animals [37]. Safe captures, manipu-
lations and ETD attachments involve physical restraint 
and often chemical sedation (Figs.  3b, 4, 5), and can 
remain challenging, especially if the possible bias associ-
ated with easy access in breeding areas during the repro-
ductive season is to be avoided.

Despite these limitations, ETDs have enabled a 
wealth of observation-driven discoveries as well as 
manipulative experimental designs. In the early days, 
these were influenced by the need to recover archival 
tags. ETDs used in the classic isolated ice hole experi-
ments on Weddell seals in Antarctica led to the first 
empirical determination of the aerobic dive limit and 
associated cardio-physiological adaptations [19, 60, 
62]. In a less constrained setting using translocation 
experiments with high recovery probability, ETDs led 
to groundbreaking insights into the management of 
oxygen stores and fat stores of northern elephant seals 
(Mirounga angustirostris) [3, 5, 83, 84, 93, 120]. In a few 
instances, researchers have utilized the intrinsic drag of 
ETDs or additional devices as an experimental manipu-
lation of the cost of locomotion [15, 72, 73] and more 
recently active acoustic ETDs have been proposed to 
more specifically and accurately manipulate the sound-
scape experienced by experimental animals [33]. Mod-
ern ETDs offer the opportunity to sample, record and 

Fig. 3 Examples of optimal EDT configuration and attachments. a 
Australian sea lion adult female and 6‑month‑old pup at Kangaroo Island, 
South Australia, part of a research project investigating the ontogeny of 
diving and movement behavior and physiology [32]. The adult female 
is instrumented with (from head to tail) an Argos satellite transmitter 
(Telonics Inc., Mesa, AZ, USA), a Mk‑6 depth and swim velocity data 
recorder (Wildlife Computers, Redmond, WA), and a VHF beacon (Lotek/
Sirtrack, St. John’s, Canada). The pup is carrying a Mk‑5 depth data recorder 
(Wildlife Computers) and a VHF beacon (Lotek/Sirtrack). 6‑month‑old 
pups were not instrumented with Argos transmitters because earlier 
observations indicated that they did not leave the colony until they were 
older, making the additional instrument unnecessary (Recommendations 
# 1, 3, and 4). The instruments were attached to the animals using a 2‑part 
quick‑setting epoxy, with a layer of neoprene and mesh between the tag 
and pelage to allow for easy removal during recapture (Recommendation 
# 9). Tags were attached in line along the dorsal surface to minimize 
disruption of laminar flow around the animal (Recommendation # 8). 
Photo © DP Costa, 2002, South Australian Department for Environment 
and Heritage permit #G24475‑2. b Attachment of a SPOT Argos 
transmitter (Wildlife Computers, 72 × 54 × 24 mm, 119 g) to the head 
of an adult Pacific harbor seal in Oregon. The base of the tag was built 
up into a convex shape to conform to the curvature of the skull, and 
is then directly glued to the pelage surface with Loctite™ Type 422 
ethyl‑cyanoacrylate adhesive (Henkel Corp., Düsseldorf, Germany). 
No mesh is used to minimize the contact area to the tag footprint 
(Recommendation #9 and 10). This adhesive sets within 10–30 s, and 
may generate some heat in the process. An alternative that produces less 
reaction heat for work in warmer climate can be found in Loctite™ Type 
4861 ethyl/butyl cyanoacrylate that cures within 60s without generating 
much heat in the process. Type 4861 remains flexible on curing. However, 
achieving proper curing can be challenging, and may be facilitated 
through the use of accelerants (water or acetone mist). This deployment 
was part of an investigation into the spatial behavior of harbor seals, their 
use of marine reserves, and environmental drivers of their movement 
[110]. The lightly sedated animal is being immobilized on a V‑shaped 
restraint board during the attachment (Recommendation # 6). Photo © 
SM Steingass, 2015, NMFS #16691
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transmit many behavioral, physiological and environ-
mental variables and parameters, including dive depth, 
swim speed, acceleration and orientation, fine-scale 
movement, flipper stroking, heart rate and venous oxy-
gen partial pressure [76, 113, 123]. ETDs can provide 
information on body temperature, heat exchange with 
surrounding medium, prey capture attempts and inges-
tion events, and proximity to conspecifics [24, 49, 51, 
54, 65, 70, 87, 90, 124]. More recently, environmental 
data collected from animal-borne tags have supple-
mented data collected from other platforms, including 
vessel-based sampling, moorings, and various types of 
passive and active autonomous samplers [11, 12]. In 
particular at latitudes higher than 60°S, more environ-
mental data have been collected by biological platforms 

(primarily southern elephant seals—Mirounga leonina) 
than by technical platforms [114].

Yet, despite continued improvements, manipulation of 
animals and the attachment of ETDs affect both host ani-
mals and nearby individuals, at various magnitudes and 
differing temporal and spatial scales [72, 73, 89, 98, 125]. 
This underlines the need to improve measures to assess, 
mitigate and reduce such effects. The well-known Guide 
for the Care and Use of Laboratory Animals provides few 
recommendations specific to research on wildlife [28, 
91, 119]. In the United States, in the absence of ethical 
guidance on principles of humane animal research that 
is applicable to research involving wildlife, the National 
Science Foundation has requested professional socie-
ties to develop taxon-specific guidelines [105]. However, 

Fig. 4 Techniques for chemical immobilization and monitoring animals for ETD attachment procedures (Recommendations #5 and 6). a 
Intramuscular injection of butorphanol and midazolam [96] in a leopard seal at Cape Shirreff using a pole syringe. Photo © DP Costa, 2018, NMFS 
#19439. b Manual intramuscular injection of tiletamine and zolazepam into a juvenile northern elephant seal at Año Nuevo State Park. Photo © PJ 
Ponganis, 2019, NMFS #19108. c This photo from the 1990s illustrates field isoflurane anesthesia of a South African fur seal on the northwest cape 
of South Africa using a portable inhalant gas anesthesia machine [34]. Note that contemporary standards require wearing gloves when handling 
an animal‑unprotected contact does not meet best practice standards. Photo © DP Costa, 2007. d Delivery of chemical immobilization using a 
 CO2‑propelled dart injector [46], for initial capture and recovery of a head‑mounted archival GPS and dive depth tag. Note the syringe dart with 
pink stabilizer in the shoulder region of this Steller sea lion [116]. Photo © RD [4], under permit by Rosprirodnadzor (Federal Supervisory Natural 
Resources Management Service of the Ministry of Natural Resources and Environment of the Russian Federation)
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guidelines by the American Society of Mammalogists 
[104] provide only the vague recommendation that ETDs 
should not exceed 5–10% of individual body mass. The 

international Society for Marine Mammalogy provides 
some generic recommendations that apply to the use of 
ETDs in marine mammals, and encourages the conduct 
and publication of studies of short-term and long-term 
effects of tags [35]. It also provides a number of broad 
recommendations with respect to general study design 
and justification, subject selection, captures, restraint 
and sedation, animal procedures, including marking and 
tagging. A recent publication has compiled best prac-
tice recommendations for tagging cetaceans [4]. Here, 
we provide comprehensive and specific Best Practice2 
recommendations for the use of ETDs on pinnipeds, 
which we have synthesized from our collective experi-
ence. These recommendations should be considered by 
researchers preparing projects and by regulatory bod-
ies authorizing projects. Our recommendations are not 
societal guidelines and supplement rather than supersede 
many previously published recommendations on ani-
mal research, capture, handling, sampling, captivity, and 
telemetry. They are specifically tailored towards the cur-
rent use of contemporary telemetry devices on pinnipeds 
compared to most extant societal guidelines. These initial 
recommendations may be refined or adjusted through 
new studies, within the guiding principles of the Three Rs: 
Reduction, Refinement, and Replacement [99]. While we 
developed these recommendations specifically for pinni-
peds, some may be applicable to other groups of aquatic 
animals, such as other marine mammals or aquatic birds.

Methods
This compilation of recommendations follows an earlier 
effort on implanted telemetry devices [52]. A number of 
researchers that have published studies using ETDs or are 
actively using ETDs.3 were contacted by the lead author 
with an invitation to participate. The intent was to include 
expertise from historic and contemporary studies, from 
both established and early career researchers with back-
grounds in behavior, physiology, ecology, and veterinary 
medicine. Twenty-four of 30 contacted researchers par-
ticipated, covering 29 pinniped species4 in all oceanic and 
coastal regions of the world, as well as many estuaries, 

Fig. 5 Examples of field procedures on pinnipeds for ETD projects. 
Having enough experienced hands on a field team helps to ensure an 
efficient procedure and minimizes handling time (Recommendations 
# 5 and 14); collection of ancillary data including morphometrics and 
tissue samples can enhance the value of ETD data (Recommendation 
#3). a Weighing a leopard seal at Cape Shirreff during sedation for 
attachment of a Wildlife Computers SPLASH10 Argos transmitter and 
TDR. This project combined physiological and behavioral sampling 
trying to match diving and movement behavior to blood volume, 
muscle myoglobin, and muscle fiber types. Photo © DP Costa, 2018, 
NWFS #19439. b An adult female northern elephant seal sedated for 
instrument attachment at Año Nuevo Reserve. The animal’s breathing 
is being monitored while morphometric measurements are taken 
and nasal swabs are collected. One crew member is attaching a 
CTD‑SRDL (SMRU Instrumentation) to the head of the animal with 
Loctite Quickset™ epoxy, with 5‑mm neoprene and mesh between 
the tag and pelage to allow for EDT removal when the animal returns 
to shore. The animal’s supraorbital whiskers are taped down to 
prevent them from sticking to the epoxy (Recommendations # 9 and 
10). A second crew member is attaching a VHF beacon (Advanced 
Telemetry Systems Inc., Isanti, MN, USA) to the back of the animal. 
The VHF transmitter is wrapped in splicing tape (3‑M Temflex™ 
type 2155) and attached to heavy delta nylon weave ¼” mesh with 
nylon cable ties. This deployment is part of ongoing research into 
the relationships between foraging behavior and body condition of 
northern elephant seals under varying climate conditions [2, 30, 97]. 
Photo © RR Holser, 2017, NMFS #19108

2 Best Practice defines procedures that are accepted in the field as superior 
to alternatives by producing best results, most positive outcomes, or minimal 
negative consequences; and are based on evidence synthesized from prior 
efforts.
3 Determined via presentations at recent conferences, including the 6th 
International Biologging Symposium held in Konstanz, Germany, in Sep-
tember of 2017.
4 Hawaiian monk seal (Monachus schauinslandii), harbor seals including 
Pacific (Phoca vitulina richardii), North Atlantic (P. v. concolor) and Euro-
pean (P. v. vitulina), southern and northern elephant seal, Weddell seal, 
Ross seal (Ommatophoca rossii), crabeater seal (Lobodon carcinophaga), 
leopard seal (Hydrurga leptonyx), ribbon seal (Histriophoca fasciata), 
spotted seal (Phoca largha), bearded seal (Erignathus barbatus), ringed 
seal (Pusa hispida), gray seal (Halichoerus grypus), California sea lion 
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lagoons, and lakes. The authors’ collective expertise is 
based on approximately 6400 deployments over 445 per-
son-years. Device types used include mechanical, opto-
mechanical and electronic archival data loggers, and 
data transmitters using UHF, GSM and Argos data links. 
Location tracking devices include VHF, GPS and Argos, 
geolocation by light, as well as active acoustic and dead-
reckoning-based location tracking while submerged. 
Device sensors used include ambient pressure, internal-, 
external-, and transmitted temperature, heat transfer 
(heat flux), movement speed (swim speed), triaxial accel-
erometer, magnetometer and gyrometer, electrocardi-
ography, as well as a variety of environmental sensors. 
Animal-borne video and acoustic recording devices are a 
relatively recent addition to the repertoire. Experimental 
designs applied by members of the group include telem-
etric behavioral and physiological observations, as well as 
experimental manipulations including isolated ice hole 
work (see [61], translocations, cost of locomotion (drag) 
manipulations, and animal-borne active ensonification. 
Projects include work on wild animals and those in cap-
tivity (both permanent collection residents, and those 
held temporarily). Attachment techniques applied have 
changed considerably over the decades and include hog-
rings in the early years, anklets, harnesses, bolts (e.g., 
through interdigital skin on flippers), and many types of 
adhesives. Programmable or remote-controlled release 
mechanisms have also been used. Capture and restraint 
methods include head-bagging, netting in water and on 
land or ice with hoop nets, throw nets, purse nets, and 
tangle nets, underwater noosing, and chemical immobi-
lization by dart or by direct injection. Restraint and seda-
tion techniques include the use of restraint boards and 
injectable and inhalant anesthetic agents.

To assemble a list of contemporarily relevant recom-
mendations that describe the current state-of-the-art, 
participants were asked to each provide their fifteen most 
important recommendations. All responses were com-
piled, identical or substantially overlapping recommen-
dations were combined, and similar recommendations 
were grouped into related classes. This led to an initial 
list of 100 recommendations with a substantial level of 
redundancy (Additional file 1: Table S1).

Participants were then asked to indicate whether any of 
these 100 recommendations should be removed because: 
(a) it is already obligate or required by legislation or per-
mits (6 eliminated), (b) is already covered by an extant 
best practice compilation (4 eliminated), (c) is not cur-
rent state-of-the-art, but is instead a desired future devel-
opment (9 eliminated), (d) deemed too prescriptive (1 
eliminated), (e) insufficiently broadly important for a best 
practice recommendation (2 eliminated), or (f) the rec-
ommendation should be combined with one of the oth-
ers listed (3 combined). Any single suggestion of removal 
resulted in an initial elimination or combination, and 
participants could object to any of these eliminations, but 
none were contested.

The remaining 68 recommendations were grouped 
in 19 classes, and participants were asked to rank their 
top 15 classes. Rankings were compiled and averaged, 
and the 6 lowest ranked put to vote for either reten-
tion (2) or combination with others (4) or elimination 
(none). This resulted in a final 15 classes of closely related 
recommendations.

These classes are presented here as the 15 most impor-
tant recommendations derived by the 24 authors.

Best practice recommendations
Pinniped researchers have primarily relied on their own 
experience tagging animals, knowledge gained from col-
leagues, and information from select published stud-
ies to justify and improve the use of external telemetry 
devices (ETDs) and to design experiments and devices. 
Here, we propose 15 specific recommendations to guide 
investigators and regulators in preparing and reviewing 
applications of ETDs in pinnipeds based on our collec-
tive experience over the past decades. We specifically 
exclude fully or partially implanted devices, where the 
entire device is implanted or where a portion of a device, 
other than the attachment mechanism, breaks the integ-
ument (see [52] for best practice recommendations on 
implanted devices). The recommendations are grouped 
into the following seven broad categories: justification, 
capture, tag design, tag attachment, effects assessments, 
preparations, and reporting.

A. Justification of the use of ETDs, selection of appropriate 
experimental design and choice of subjects
1. The use of ETDs should be justified for specific exper-
imental designs in view of risks for and effects on ani-
mals, importance of data, and potential alternatives.
Bateson’s cube [9] and its more recent application in a 
conservation framework [82] considers the ethical risk of 
and support for research based on three parameters: the 
quality and importance of the research, the certainty of 
benefit to the species under study (where any protected 

(Zalophus californianus), Steller sea lion (Eumetopias jubatus), Australian 
sea lion (Neophoca cinerea), New Zealand sea lion (Phocarctos hookeri), 
Galápagos sea lion (Zalophus wollebaeki), Antarctic fur seal (Arctocepha-
lus gazella), Guadalupe fur seal (Arctocephalus townsendi), Galápagos fur 
seal (Arctocephalus galápagoensis), New Zealand fur seal (Arctocephalus 
forsteri), northern fur seal (Callorhinus ursinus), South American sea lion 
(Otaria byronia), South American fur seal (Arctocephalus australis), South 
African fur seal (Arctocephalus pusillus), and walrus (Odobenus rosmarus).

Footnote 4 (continued)
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status of the species of interest should be considered), and 
the animal suffering caused by a study. Thus, quality and 
benefit of the research are required to justify any animal 
suffering. For any particular study, animal suffering can 
also be reduced by consideration of the Three Rs: Reduc-
tion, Refinement, Replacement [99]. Generally, Reduction 
is interpreted as the use of fewer animals. Collabora-
tions and the possibility of combining multiple projects 
or experiments can reduce the number of animals used, 
which may also reduce the number of projects at one site 
and instances of group disturbances. Sample size may 
also be reduced by collecting more or higher-resolution 
data per subject. Refinements are improvements in exper-
imental procedures that result in fewer negative effects 
on animals or improved animal welfare. For example, 
smaller tags or fewer tags per individual have the poten-
tial to reduce or eliminate drag-related energetic costs 
associated with ETDs. Replacement avoids the use of 
animals altogether, finding alternative ways to obtain the 
desired information. For example, this could be imple-
mented through the use of existing high resolution, high 
density data sets that may lead to enhanced opportunities 
to use computer models to simulate animal responses to 
situations or the environment. Other alternatives to ETD 
use might include: direct or remote video observations of 
individual animals using temporary, permanent, or natu-
ral markings; genetic studies; acoustic tracking; as well as 
other approaches. However, replacement may not neces-
sarily be a viable option. Valid justifications for ETD stud-
ies include: the predicted data recovery probability with 
sufficient statistical power, resolution, or sensitivity is too 
low for any alternative; the alternatives are likely to result 
in greater impacts on individuals or greater disturbances 
to large groups; or simply that important data cannot be 
collected by any other means. In addition to these ethical 
considerations that may influence experimental design, 
ETD studies are further affected by the need to consider 
mode and likelihood of data recovery. Tag failure and 
non-recovery (e.g., loss of transmitting tags or failure to 
recapture animals instrumented with archival tags) will 
affect the balance between possible negative effects on 
animals versus benefits of the research.

2. Conduct a sample size estimation during project 
planning.
The required number of ETD deployments should be 
estimated during the project design phase via an appro-
priate a priori power analysis, when possible for non-
exploratory hypothesis testing and where analyses are 
specified at the design stage (see [101]. However, this is 
only possible where data on variance are available or can 
be projected or modeled. Where such information is not 
available, exploratory or proof of concept projects on a 

few animals might be warranted. An alternative estima-
tion based on a review of published telemetry studies 
by study type in relation to their sample sizes has been 
proposed [101]. Studies using ETDs should also con-
sider realistic deployment durations and available data 
on activity (proportion of time spent in relevant activ-
ity such as diving or migrating). An appropriate sample 
size estimation should account for possible failure at sev-
eral key places: tag electronics and operational software, 
tag attachment, animal recapture and/or data recov-
ery—any of these may increase with planned deploy-
ment duration. For long deployments (e.g., more than a 
few months), the likelihood of natural mortalities must 
be considered. Higher-resolution devices, higher sam-
pling rates, or longer-duration deployments may enable 
smaller sample sizes, under some circumstances. Pro-
ject planning should also include data recovery strate-
gies that are based on realistic projections, but potential 
effects of these strategies (e.g., recapture) also need to be 
considered and where possible accounted for. For recap-
tures, knowledge of seasonal patterns in site fidelity may 
be important. Common data recovery approaches could 
be supplemented through novel, emerging technologies 
(e.g., shore-based, automated Argos message relay sys-
tems (e.g., [55], or the installation of mobile telephony 
repeaters).

3. Optimize ETD selection, programming, and collec-
tion of ancillary data.
Critically evaluate available technology to select the ETD 
to best meet project objectives. Sensor selections, ranges, 
sensitivity and resolution should be considered, as well 
as battery life, storage capacity, and available attachment 
configurations based on device design. Device and sensor 
selections as well as programming need to be appropri-
ate for study species and expected behavior [16]. Opti-
mal device programming typically requires knowledge of 
duration and magnitude of the effects to be monitored. 
Short-duration events and those of small magnitude 
require higher sampling rates and greater resolution to 
detect [14]. Ideally, instruments that minimize hydrody-
namic effects on animals are preferable to those that are 
bulkier and less streamlined. Combining functions into 
fewer instruments is preferable as long as this configura-
tion does not unnecessarily increase instrument size and 
drag, as is maximizing the information collected from all 
available sensors. We specifically recommend maximiz-
ing the collection of all possible ancillary data if this can 
be done with no or little additional effect to the animal. 
This approach can significantly enhance the value and 
interpretability of the data and power of the study, can 
support the Reduction component of the Three Rs, and 
can also enhance future opportunities to Replace (via 
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re-use of data for other studies). Recommended ancillary 
data for ETD studies includes collection of morphomet-
ric measurements and tissue samples to allow estimation 
of body condition (see [108], baseline health assessments 
(e.g., [38] and age determination [100] at the time of cap-
ture and ETD deployment, but could also include appli-
cation of long-term or permanent, natural or applied 
markings (see [94, 118], behavioral observations, resights, 
and collection of environmental data.

4. Select appropriate research subjects.
The most appropriate experimental group composition 
for the question should be determined in view of pos-
sible tag and procedure impacts. Criteria to consider 
include sex, age, and size, as well as body condition or 
reproductive state. Following this a priori determination 
of group composition, experimental designs should con-
sider establishing in situ animal selection criteria. When 
the selection is not critical to the sampling design (i.e., 
differences in health status, size, age or other criteria 
are not the focus of the study), animals with lower risk 
of complications or those likely to have a lower popula-
tion-level impact, could be selected (e.g., larger or older 
animals, males). The inclusion or exclusion of animals 
as a function of their health status (e.g., body condition, 
injuries) is an important ethical consideration and can 
also increase data return probability and enhance data 
quality. However, use of such criteria may introduce 
biases in estimates (e.g., behavior or survival) that may 
or may not be correctable if the interest lies in under-
standing the entire population (see [7]. It is important to 
also consider and minimize potential subject selection 
biases based on location, time of year, animal capture 
procedures, and animal behavior. Timing of captures in 
relation to the pelage molt will affect ETD deployment 
duration and data recovery probability. We further rec-
ommend to derive and apply a post hoc study inclusion 
criterion: unless otherwise proven, it should be assumed 
that animal manipulations and ETD attachment will 
affect a subject’s behavior, at least initially (see also Rec-
ommendation #11). The study inclusion criterion should 
be based on the empirical determination of the time after 
which behavior and data are no longer affected by the 
treatment.

B. Capture and restraint
5. Minimize manipulations, duration of restraint and 
captivity.
Initiating an acute stress response is unavoidable when 
capturing and handling wild animals [42], however the 
application of best practices can reduce the likelihood 
of stress progressing to highly negative outcomes such 

as capture myopathy (e.g., [102, 109]. While the use of 
chemical restraints to mitigate capture and handling 
stress is widely used as standard practice in pinnipeds 
(see Figs.  3b, 4, 5), there is a large degree of individual 
variation in behavioral and physiological response to cap-
ture stress even with the use of sedatives and tranquiliz-
ers [41]. Manipulations of research subjects should be 
kept to a minimum and the duration of restraint, trans-
port and temporary captivity should be carefully consid-
ered within the framework of what is needed to achieve 
study goals while minimizing the negative impacts on 
individuals [17]. Multiple handling events should be well 
justified and their effects accounted for [80].

Researchers should only use appropriate handling and 
sedation methods (recommendations #6 and #7) with 
trained personnel (recommendation #14) to make the 
manipulations as efficient as possible and minimize nega-
tive effects. The use of temporary captivity should be 
carefully considered especially due to the extended stress 
that it may impose on study subjects. Every effort should 
be made to release all individuals at the same location at 
which they were captured. A special case of this may be 
where individuals equipped with ETDs are translocated 
to investigate aspects of energy expenditure and dive 
behavior over a known distance (e.g., [3, 36, 48, 72, 73, 83, 
93, 120]. While translocation is already a common tool 
for ETD studies in pinnipeds, every effort to minimize 
stress should be taken during handling and transport of 
subjects and the method should be well justified within 
the study framework [25].

In addition to minimizing the effects of capture and 
restraint on target animals, researchers should also con-
sider the potential effects of research operations on non-
target animals and/or other species within the study 
area. When working in a breeding area, researchers 
must consider whether and to what extent the presence 
of a capture team may cause other individuals to change 
their behavior and flee the capture location. For instance, 
researchers may need to weigh the impact of capturing 
two animals at a time against disturbing an entire colony 
twice. The impact of captures on nearby individuals will 
vary by species. In addition, ETD studies often target 
pinnipeds during the reproductive season. When captur-
ing lactating females with young, dependent pups (clas-
sification of young is species dependent), pups should 
be maintained nearby either within a natural crèche or 
within a pup box, bag, or net. Upon release of lactating 
females, pups should be released simultaneously nearby 
or adjacent to the female and researchers should make 
every effort to reunite mothers and pups where possible 
to minimize the chance of abandonment.
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6. Use appropriate capture and restraint methods.
The method used to capture and restrain an animal 
should minimize risk, stress, and pain to the subject 
while also ensuring the safety of personnel. Pinniped 
species vary widely in their habitat choice, response to 
human presence [27], physiological reactions to both 
physical and chemical restraint, and the danger that they 
pose to researchers [88]. Consequently, specific immo-
bilization methods vary between species and situations; 
careful consideration is needed to develop a capture plan, 
and research teams should always include personnel 
experienced with the study species (see also Recommen-
dation #14).

The Society for Marine Mammalogy provides specific 
guidelines for three aspects of animal capture: (1) the 
design of physical restraint equipment, (2) when some 
form of anesthesia should be used, and (3) drug and 
technique choices [35]. These guidelines provide a use-
ful framework when designing a plan for handling any 
pinniped species for ETD attachment. Three chapters on 
pinniped capture and immobilization in Zoo Animal and 
Wildlife Immobilization and Anesthesia [121] provide 
a good starting point for developing new capture plans, 
although the focus is on work with captive animals and 
it is still critical that investigators work with research-
ers experienced with the species and system in question. 
Researchers should frequently search for new literature 
on novel techniques and revised drug recommendations 
to refine their established protocols (e.g., [1, 10, 13, 56, 
69, 79, 85, 86, 92, 96].

Whenever possible, adding ETD attachment to already 
scheduled anesthesia procedures is worthwhile. While 
sedation and anesthesia can reduce stress to the animal 
and danger to personnel [20], they do pose risks to the 
animal [46, 95]. Species-specific monitoring and emer-
gency protocols should be established prior to handling 
any animals and should outline vital signs (respiration 
rate, heart rate, capillary refill, palpebral reflex, etc.) to be 
monitored throughout handling. In the event that an ani-
mal responds poorly to handling, contingency measures 
outlined in the emergency protocol should be followed 
under the guidance of the most experienced person pre-
sent (see also recommendation #14).

7. Recognize and manage potential thermoregulatory 
stress and protect eyes during capture and restraint.
Being on land exposes pinnipeds to unique thermoregu-
latory demands that are not similarly experienced by 
fully aquatic marine mammals, and pinnipeds have 
been shown to elevate body temperature when chal-
lenged with warmer external temperatures, suggesting 
they are moving beyond their thermoregulatory limits 
[67, 115, 122]. Small or very young animals and those 

in poor body condition may experience hypothermia 
in cold climates, especially while sedated. Researchers 
should understand the thermoregulatory mechanisms 
of the species and/or taxon [57] and age class [26] with 
which they are working. Since normal behavioral mecha-
nisms for thermoregulation are restricted during capture, 
restraint and sedation, animal temperature should be 
closely monitored during handling, if possible (e.g., via 
visual behavioral monitoring for stress, movement, pant-
ing, salivation, or via infrared thermography, or rectal or 
tracheal thermometry). Signs of thermoregulatory stress 
in mammals are described by Silanikove [106], and addi-
tional thermoregulatory considerations for wildlife work 
can be found in Sikes [104]. Prevention of thermoregula-
tory stress can be initiated during project design by con-
sidering or managing conditions (ambient temperature, 
wind and availability of windbreak or shade) at the pro-
cedure location. In cases where the study animal appears 
to become overheated, researchers should cool tissues of 
strong thermoregulatory value, including fore and hind 
flippers, with water [112].

Animals may experience eye damage during prolonged 
exposure to solar radiation; this risk is enhanced by a 
decreased ability to blink during sedation or anesthesia. 
Eyes should be covered with a UV-resistant and non-
abrasive material during restraint to both protect the eyes 
and to reduce stimulus to the captured animal. In addi-
tion, a gel-based solution of artificial tears can be applied 
to protect the eyes of the animal. Under light sedation, 
animals may retain some visual acuity, so covering the 
eyes will not only aid in protection, but also will help to 
reduce handling stress for most species.

C. Tag design
8. Optimize and validate safe tag designs.
ETDs can have measurable effects on their host animals: 
they may increase the cost of locomotion or thermoreg-
ulation, alter foraging, social and reproductive behav-
ior, change the detectability of hosts by predators or 
prey, or increase the risk of entanglement [42, 89, 117]. 
In extreme cases, negative effects of ETDs could lead to 
injury or even death of the host. Designs should, there-
fore, minimize these risks by optimizing: device size in 
terms of footprint, shape and drag (including aspect ratio 
and frontal area), mass and density (weight in air, and 
buoyancy), the shape and length of external device com-
ponents (length and size of external sensors and cables, 
and of antennae) and the drag these cause, and attach-
ment location (in terms of drag and interference with 
normal behaviors)—where possible. The color and sen-
sory appearance of the tag, both to the host animals and 
others, particularly predators/prey, also warrant consid-
eration (see recommendation #12).
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Another critical device design and selection aspect is 
the pressure rating. Electronic tags, in particular those 
containing lithium batteries, can critically fail when pres-
surized beyond design depth. This can lead to burns and 
other injuries. For implanted telemetry devices, where 
such failures are likely fatal, a margin of safety aiming for 
3× the average reported maximum depths (for target ani-
mals) was recently proposed [52]. A similar safety mar-
gin would also be appropriate for external devices. Users 
should also consider the potential for tag ingestion by a 
predator, which might necessitate considering predator 
dive depth in choosing tag depth rating.

Finally, the environmental impact of discarded, non-
recovered tags should be considered. The occurrence of 
derelict tags should be minimized, and for non-recovery 
projects, minimizing the use of toxic or reactive materi-
als (heavy metals, certain battery electrolytes) should be 
favored.

D. Tag attachment
9. Optimize tag attachments.
The attachment method and instrument location will be 
influenced by the size of the device and project goals. 
With recent miniaturization, direct attachment methods 
have become increasingly effective. Different attachment 
locations are subject to different constraints. Head-
mounting generally improves transmission frequency 
and quality but restricts device size and likely increases 
the hydrodynamic load, and may have other unmeas-
ured effects on behavior. Back-mounting often allows for 
attachment of larger devices, but exposure constraints 
limit uplinks. Accelerometers and other sensors may 
detect different activities or behaviors depending on 
attachment location, and device-induced hydrodynamic 
drag may also differ. Tag removal may be more challeng-
ing from some attachment areas than others (e.g., it may 
be more difficult to remove tags attached to the head). 
Additionally, the optimal choice for attachment method 
and location will be influenced by environmental condi-
tions, animal habits and haul-out substrate (e.g., rocky 
shores, sandy beaches, ice, or mostly pelagic habits).

Where possible, attachment locations should be cho-
sen to minimize effects on animals, and methods should 
be appropriate for planned deployment durations while 
minimizing handling (i.e., a permanent attachment may 
not be appropriate for a tag with a short battery life). 
Devices should not be placed directly over highly flexible 
areas, or on joints. The footprint should be minimized 
while also minimizing likelihood of tag loss. Gener-
ally, there is no need for a footprint larger than the tag. 
Harnesses or other high-drag attachments with high 

entanglement likelihood should only be used for very 
short periods and under highly controlled conditions 
such as captive or trained animal projects, or possibly 
translocation experiments, and only when risks can be 
mitigated (e.g., in a controlled setting or via the use of 
corrodible links in harnesses). Overall, the ease and safety 
of device removal should be considered. To maximize the 
chances for recovering data from ETDs that might be 
shed and found by humans or retrieved by hunters from 
species taken for subsistence, identifying information 
should be displayed on devices; this is also important to 
subsistence users who may wish to know the history of a 
harvested animal that has been tagged.

10. Select suitable attachment materials and appro-
priately test and apply.
Modern adhesives are probably the most common form 
of ETD attachment to the pelage of pinnipeds [31], see 
Figs.  1b, d, 3. This is highly effective and generally very 
safe, but improper application can result in skin irrita-
tion, skin abrasions and punctures, burns or other skin 
damage, and secondary infections (see [31]). Exother-
mic setting adhesives (two-component epoxies and 
accelerated cyanoacrylates) generate heat (often subject 
to environmental conditions) that can result in severe, 
third-degree burns. This can be avoided by reducing the 
amount and depth of adhesive applied, sequential appli-
cation of multiple thin layers rather than a single thick 
layer, the reduction or avoidance of accelerants, mini-
mizing direct sun exposure, or the application of cooling 
packs or pre-cooled tags. However, there is a trade-off 
between reducing generated heat and impeding adhe-
sive curing, and in extremely cold climates heat packs 
may be required to maintain temperatures adequate for 
curing. Mechanical action and wear of attached tags can 
sometimes be mitigated by soft transitional or carrier 
material such as neoprene, but such layers may also trap 
heat during the setting reaction. Fur can also effectively 
serve as a transitional material if tags are glued to only 
the outermost layer of the pelage (Fig. 3b). Directly glu-
ing to the skin should be avoided, if possible. For archival 
devices that require recovery and for multiple deploy-
ments (e.g., double translocation), consider easy removal 
and reattachment methods to avoid reapplying glue, such 
as gluing netting to the pelage and attaching ETDs with 
cable ties (see Fig. 1d). Overall, the thermal and chemical 
properties, processing time, attachment life, and ease of 
removal of adhesives should be carefully selected to min-
imize adverse effects, and reasons for product selections 
described in publications of methods, if possible.
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E. Effects and impact assessments
11. Plan, conduct and report on short-, medium- and 
long-term assessments.
The deployment of ETDs can cause behavioral changes, 
may affect welfare and even survival of the host animal, 
and could also influence the data collected. It is impor-
tant to include effects assessments in study designs both 
in terms of basic principles of the scientific method, as 
well as principles for the ethical treatment of research 
animals. Even for modern miniaturized ETDs attached in 
comparably non-invasive ways, impacts have been inves-
tigated, and effects reported in the form of increased 
drag, cost-of-transport, and thermoregulatory expenses 
[72, 74, 98, 117, 118, 125, 126]. When transmitting 
devices ‘go off the air’ (i.e., transmissions cease to be 
received), battery exhaustion, device or attachment fail-
ures are often assumed, but process- or device-related 
fatalities are rarely considered, and long-term effects 
rarely studied. Devices and procedures may also generate 
effects beyond the data collection period that may only 
become apparent through control studies or continued 
monitoring.

As a result, possible effects should be considered and 
assessed across three broad time periods:
(a) Short-term effects ranging from hours to days that 

are most likely related to capture and manipulations, 
and may inform a study inclusion criterion (see Recom-
mendation #4). Examples may include stress and anxiety 
through separation from conspecifics, and effects related 
to sedatives including disorientation, reduced appetence, 
mobility, or altered vigilance.
(b) Medium-term effects ranging from days to months 

are critical in determining possible influences on data. 
Until demonstrated otherwise, it should be assumed that 
tagged animals may exhibit increased cost of locomotion 
or altered performance, which may also affect their forag-
ing ability and other behaviors. Some studies have found 
measurable energetic effects even for small devices [98], 
while other studies have found no such effects [81].
(c) Long-term effects ranging from months to years, 

possibly beyond the data collection period. Some effects 
may have low level accumulating impacts that may 
become more detectable when integrated over longer 
periods of time, or over multiple sequential deploy-
ments [8, 72, 126]. Suitable metrics for effect assessments 
should be carefully chosen, since effects may occur out-
side of the selected suite of primary experimental met-
rics. Short- and medium-term effects could be studied at 
the level of proximate mechanisms, and long-term effects 
could more readily be assessed via ultimate impacts 
on growth (including growth of dependent offspring), 
migration, and fitness (e.g., [103]. The selection of appro-
priate control groups is an important aspect of effects 

assessment that can also enable creative approaches. For 
example, assessments can be based on classic compari-
sons to un-instrumented, non-manipulated control ani-
mals, or alternatively on animals carrying different types 
of external or internal devices with previously quantified 
effects. Experimental animals serving as their own con-
trols may also be an option, through second observation 
periods with altered device configurations, or simply 
through extended observation periods (e.g., [45]). Any 
recaptures or resights of tagged animals should include 
efforts to assess status and evidence of effects. Often, 
such studies may be enabled through common, concur-
rent population monitoring programs based on marked 
or tagged individuals. Alternative assessment approaches 
may include captive animal studies under controlled con-
ditions, such as energetic studies on device-altered cost 
of locomotion (e.g., [72, 98]) or cost of thermoregulation 
(e.g., [74]). Any evidence of effects should be addressed 
and incorporated into refinements.

It cannot be assumed that ETDs will have no impacts 
simply because no effects have been found in some other 
devices or on a different species, since effect magnitudes 
appear to be specific to device shape, mass, size, attach-
ment method and location, as well as animal state and 
circumstances [17]. For example, animals may have a 
greater buffer to adjust to increased device drag when 
conditions are good, but have no or limited ability when 
conditions are poor or food is scarce. The likelihood of 
an effect for a species/device combination is, therefore, 
never certain, and studies should be conducted with cau-
tion. It is prudent to carry out and report control studies 
when possible (but note Recommendations #1 and #2) 
[17, 118].

12. Validate ETDs for any new tag/species 
combination.
Given the range of possible effects of ETDs and proce-
dures on their hosts, and in view of evidence of specificity 
of effects [89, 125, 126], it is important to assess effects 
for every new device/attachment—species combination, 
and to mitigate or minimize any detectable effects. For 
critically listed (i.e., endangered) species, the absence of 
negative effects should be validated, where possible, on a 
suitable surrogate species (i.e., similar or related, but not 
critically listed), or on stranded animals after rehabilita-
tion (and see also Recommendation #4).

13. Consider active and passive device detectability.
ETDs may alter the detectability of animals to conspecif-
ics, predators or prey, in a variety of ways based on dif-
ferent senses. Tags and attachments may be more or less 
visible depending on size, shape and coloration. All elec-
tronic tags produce electromagnetic signatures through 
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periodic sensor sampling, operational activities, trans-
missions, or by their metal mass (e.g., battery) moving 
through salt water. Tags may generate active and passive 
acoustic signatures that could be detected by predators 
or prey. Such emissions could also be perceived by host 
animals and alter behavior. Tags may also be echogenic, 
altering the detectability of their hosts by predators 
employing active echolocation. ETDs should be selected 
and attached in a manner that minimizes these effects.

F. Training, testing and preparation
14. Preparation and training.
The capture and handling of animals has inherent risks 
for both the animal and personnel involved. Guidelines 
provided by both the Society for Marine Mammalogy 
[35] and the American Society for Mammalogists [104] 
direct researchers to ensure that personnel working with 
animals in the field have appropriate training and experi-
ence to ensure the safety of those involved and the suc-
cessful collection of data.

Pinniped captures can be particularly risky for both 
animals and researchers if team members are not ade-
quately prepared. Generally acknowledged risks include 
physical injury, hyperthermia, excessive stress and 
capture myopathy, overdose of sedative drugs—some 
of which can lead to death in extreme cases, but also 
mother–pup separation or aggression by conspecifics, 
as well as zoonoses (diseases transmitted from animals 
to humans) and zooanthroponoses (diseases transmit-
ted from humans to animals). Research teams should be 
of sufficient size and experience to capture, instrument, 
monitor, and safeguard the animals and to respond to 
emergencies if necessary. This should ideally include spe-
cies- and location-specific experience. All team members 
should have clearly designated roles and responsibili-
ties, and should be familiar with pertinent emergency 
response plans. Appropriate emergency drugs and equip-
ment must always be present and personnel need to be 
familiarized with their use prior to animal handling.

Careful preparation and planning are essential for suc-
cessful and safe work in the field and help to minimize 
unfruitful animal handling. All ETDs should be tested 
prior to attachment on animals. This includes testing that 
all sensors and transmitters are functioning correctly, 
that clocks are appropriately synchronized to allow for 
subsequent time drift correction, and that tags will not 
interfere with each other if multiple instruments are to 
be deployed on an individual. For custom-built hous-
ings and instruments, it is critical that devices are pres-
sure tested beyond the maximum expected dive depth 
of the target species. Some ETDs may require pre- and/
or post-deployment calibration (i.e., swim speed sensors, 

fluorometers, etc.) to maximize the accuracy of the data 
collected.

In addition, when working with a new protocol or 
new crew, running through the steps of the capture and 
instrument attachment procedure ahead of time will help 
to increase efficiency and minimize confusion in the field. 
This process should be mirrored after field work has been 
completed. Taking the time to debrief after animal han-
dling procedures is an essential step to refining protocols, 
enhancing the training of less experienced personnel, and 
increasing efficiency for future deployments.

G. Reporting, analyses, data management
15. Reporting.
In support of the application of the Three Rs, it is criti-
cally important that all findings are reported in readily 
accessible (e.g., Open Access) peer-reviewed literature. 
Once published, all metadata (preferably in standardized 
format), data and analysis code/scripts should be placed 
in a discoverable and accessible repository. Publications 
should specifically describe details that are integral to 
effects assessments, and thus to future refinements, and 
should minimally include these metrics: tag attachment 
method (e.g., glue type) and location, footprint size of 
tag/glue area, tag mass, density (or buoyancy) and fron-
tal area. If a tag is of a novel or unique design, a photo is 
appropriate to illustrate shape, coloration, and visibility. 
It is also highly recommended to report observed data 
collection durations and data recovery rates, and if pos-
sible distinguish between end of record modes (battery 
exhaustion, attachment failure, predation/mortality, or 
unknown). Publications should include reports of prob-
lems encountered, effects observed, and should suggest 
improvements.

Conclusions, caveats and future directions
These 15 best practices represent what we feel are state-
of-the-art recommendations for projects using ETDs 
to study pinniped ecology, behavior, physiology, and 
hydrography. We suggest following these recommenda-
tions in conjunction with any societal and institutional 
guidelines in designing, preparing and implementing 
projects. Any deviation should be convincingly argued 
to regulatory bodies, ethics review committees, journal 
editors and referees. At the same time, it will be critically 
important to avoid creating a situation where studies are 
constrained until the minimization of impacts has been 
demonstrated, as this cannot be accomplished without 
risking such effects. New techniques and approaches 
in particular cannot be developed and trialed without 
incurring such risks. We specifically call on regulators 
to avoid the ‘over-regulation by specificity trap’, whereby 
desirable and important studies are curtailed through 
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progressive reduction in flexibility and ad hoc, in  situ 
decision-making that are key to the effective implemen-
tation of best practices in wildlife research (see [28, 119].

The further development, evolution, and improvement 
of best practices should be pursued within the framework 
of the Three Rs [99]. While eliminated from our original, 
unvetted list of 100 recommendations as not currently 
state-of-the-art, the following aspects represent desired 
future directions in the field, and are presented here 
around 4 main themes.
(a) Technical developments: A desired future direc-

tion facilitated through stronger connections between 
tag developers and researchers is to pursue, test, and 
integrate new sensors, leading to increased capabili-
ties, smaller tags, and longer life. Within these goals, the 
development of ETDs capable of collecting multi-year 
data would enable many additional experimental designs 
and projects [6]. This may require novel attachment tech-
niques that may be facilitated through smaller devices. 
For these long-term deployments, future developments 
should seek to integrate energy harvesting mechanisms 
to increase the life of the tag, while minimizing the need 
for large, heavy batteries. Concomitant with this, the fur-
ther development and wider availability of small, reliable 
remote release mechanisms would allow the elimination 
of a second handling period for device recapture and 
would likely increase data recovery probabilities.
(b) Validation of energetic proxies: A second future 

direction strives to pursue more species-specific vali-
dations of energetic proxies from tags. There have been 
a great number of studies in recent years that have 
attempted to link data from ETDs, such as accelerometry, 
activity partitioning, movement data or dive profiles, to 
robust models of energy usage over time. Using tag data 
that have not been properly calibrated to energy usage 
can be problematic and lead to spurious correlations and 
risks falling into the so-called ‘time-trap’ (merging meas-
urements such that time is on both sides of an equation, 
as discussed in [40, 66], but may be difficult to assess for 
certain species.
(c) Expanding life history studies: Our third future 

direction expands studies on ontogeny, reproduction 
and survival. Tagging techniques and studies should be 
developed that facilitate understanding of ontogeny and 
link existing data to survival, recruitment, and ultimately 
to fitness. Data on diving behavior, movements, and 
migrations collected from ETDs on individuals should be 
linked with data on reproduction and survival of animals, 
especially beyond the tagging period. This would lead to 
powerful new experimental designs, with substantially 
increased scope of testable hypotheses and the ability 
to investigate questions previously labeled as ‘empiri-
cally intractable’ that will improve our understanding of 

population-level consequences of different behaviors and 
tagging regimes.
(d) Data accessibility and sharing: The fourth future 

direction is to pursue enhancements and improvements 
of data portals for sharing telemetry and ancillary data. A 
number of databases already exist, such as the Integrated 
Ocean Observing System (IOOS),5 Animal Tracking Net-
work (ATN),6 Marine Mammals Exploring the Oceans 
Pole to Pole (MEOP-CTD Database),7 and MoveBank.8 
This is a challenging effort that is already well under-
way, and we encourage researchers incorporating ETDs 
into pinniped studies to continue to push for accessibility 
developments and highly recommend their participation 
in these databases, even when not obligatory.
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