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Abstract 

Background: We present a cellular phone-enhanced GPS tracking system (GPS mobile with CTG-001G receiver 
triangulation) suitable for urban carnivores, in tandem with appropriate home range analysis, as an additional tracking 
technology option in metropolitan settings. We conduct this proof-of-concept study working with the management 
of introduced invasive raccoons in Japan (and conditions implicit to this control program).

Results: Each tracking period averaged 17 days, and a tracking accuracy of < 50 m error was achieved in over 30% of 
the fixes. Variogram analysis demonstrates that these data were of sufficient quality to support home range analysis. 
Home range areas estimated from these data revealed that raccoons in urban Japan likely range over a much greater 
area than has previously been reported.

Conclusions: As a proof of concept, these prototype collars were successful in tracking raccoons in the difficult 
suburban environment, where this system (CTG) made fixes against FOMA antennae-augmented GPS and yielded 
data that could support home range analysis. We advocate further research and development to refine this system, 
with broad application as a tool to diversify wildlife tracking technology options in urbanized environments, where 
synanthropic and/or invasive species can cause a nuisance warranting effective management.

Keywords: Autocorrelated kernel density estimation (AKDE), Home range, Invasive species, Mobile phone tracking, 
Raccoon, Urban ecology, Variograms
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Background
Although urbanization presents a growing threat to wild-
life [1, 2], many generalist species are proving highly 
adaptable to human-modified landscapes [3]. Nota-
bly, various medium-sized carnivores, such as red foxes 
(Vulpes vulpes), raccoons (Procyon lotor), martens (Mar-
tes spp.) and coyotes (Canis latrans), now flourish across 
urbanized environments (e.g., [4, 5]), because they are 
able to modify their behavior [6] and/or exploit novel for-
aging opportunities, such as waste from households and 
restaurants [7, 8]. Although mesocarnivores do not insti-
gate the level of deterrence and removal strategies elic-
ited by large and potentially dangerous carnivores (e.g., 
bears, Ursidae, [9]; leopards, Panthera pardus, [10]), they 

can still pose a serious nuisance by upturning garbage 
cans, contaminating areas with feces, or causing a hazard 
on highways [8]. Effective management of human wild-
life conflicts [11] is especially important when introduced 
and/or invasive species are involved [12], or when meso-
carnivores also carry serious zoonotic diseases [13]. For 
example, skunks (Mephitis spp.) and raccoons are a major 
rabies host in urban centers in North America [14]. To 
better inform the design of human–wildlife conflict 
mitigation [15, 16], it is therefore paramount to develop 
technologies better able to track urban carnivores in this 
challenging environment. Ideally, such telemetry systems 
must yield data able to support home range analysis [17, 
18], where techniques such as VHF tracking can some-
times be hampered by the extent of private land owner-
ship in suburban areas, because researchers must access 
multiple points for accurate positional triangulation [19]. 
Electrical interference from household appliances can 
also pose problems, as can the obstruction of radio sig-
nals by buildings [20]. Although GPS (global positioning 
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system) tracking circumvents some of these problems 
[21], systems can suffer from low positional accuracy and 
habitat bias [22], due to poor line of sight to orbiting sat-
ellites, and archival GPS also results in a delay until data 
download. Where GPS data download directly via satel-
lite, costs can be prohibitive (discussed in [23–25]).

Here we undertook a proof-of-concept study to 
develop and test a prototype cellular phone-based track-
ing system, triangulating positional fixes relative to 
network antennae to compensate for the loss of GPS 
connectivity among urban structures (e.g., [20, 26]). We 
conducted this trial in suburban Tokyo, using the net-
work of FOMA base stations/antennae (an abbreviation 
for Freedom Of Mobile Multimedia Access—a third-
generation (3G) mobile communication service provided 
by NTT Docomo Inc., the predominant cellular phone 
service provider in Japan). This approach of combining 
GPS and PHS (Personal Handy-phone System) was first 
adapted for wildlife tracking in Japan by Saeki et al. [27], 
who developed the personal location application offered 
by Japan’s commercial network system (equivalent to 
GSM or DECT in other global regions) to acquire posi-
tional information for tracked animals continuously and 
remotely in real time. The cost of this system was modest, 
at c. 97,000 JPY (< US$ 900, including hardware purchase 
and network fees) per animal for a 3-month study, with 
approximately half of this cost being related to data trans-
mission [28]. This pioneering tracking system reliably 
achieved mean positional errors < 20 m in stationary tests 
and < 60 m in moving tests [27, 28], although it suffered 
from short battery life, as well as positional errors as large 
as 100 m in actual deployment, for example, as reported 
by Morishita et  al.’s [29] study on jungle crows (Corvus 
macrorhynchos).

Advances in the 3G (third-generation) telecommunica-
tions, using W-CDMA (Wideband Code Division Multi-
ple Access), have provided significant improvements in 
positional accuracy. This has been used in Japan to track 
endemic raccoon dogs (Nyctereutes procyonoides [20]), 
and has been applied to a feasibility study tracking inva-
sive raccoons [30]. Building on this preliminary work, 
here we test a system combining a positional informa-
tion terminal (CTG-001G, from Japanese cellular com-
pany NTT Docomo Inc., hereafter CTG) with a built-in 
onboard GPS function, compatible with the FOMA 3G 
telephone network—(for full technical details see [27, 
28]). We apply this system to track invasive raccoons, as a 
pertinent model species. Raccoons were first introduced 
to Japan in 1964 [31] and have now been confirmed in 44 
of Japan’s 47 prefectures, quickly invading Japan’s urban 
centers [32, 33]. The Japanese government’s current 
policy (Invasive Alien Species Act, 2004) is to attempt 
to eradicate raccoons across Japan, due to intra-guild 

competition with native carnivores [34], their involve-
ment as a vector of various zoonotic diseases [35–42], 
but particularly the general nuisance they cause by invad-
ing homes, upturning garbage cans, and damaging crops 
[43]. The scale of this intervention can be seen in num-
bers killed across Japan increasing from 24,874 in 2010 to 
38,319 in 2015 [44, 45].

Our aims here were to provide a proof-of-concept 
test of CTG functionality for tracking urban carnivores 
in a metropolitan setting, in particular, whether cellular 
phone-enhanced GPS tracking could generate data of 
sufficient quality to support home range (HR) analysis, 
where Burt [46] defined HR as the area traversed by an 
individual in its normal activities of food gathering, mat-
ing, and caring for young. Many analytical methods have 
been developed to estimate home range area, and here 
we apply autocorrelated kernel density estimation (AKDE 
[47]), which can account for the autocorrelation structure 
inherent in tracking data [47–49]. However, to compare 
the results from these novel tracking data with previous 
studies on space use in urban raccoons, we also applied 
conventional kernel density estimation (KDE [50]) with 
Gaussian reference function bandwidth optimization. 
We then use our findings to comment on the limitations 
and potential for refinement of this CTG technology for 
future deployments.

Results
System efficiency
Seven adult raccoons were collared, six males (B1–2, 
M1–4) and one female (F1), which was lactating when 
captured and then continued to be detected (also by 
ancillary camera trapping) around her natal den area. 
One of these male raccoons (M1) was re-captured and 
collared a second time. Each raccoon was tracked for 
between 4.3 and 56.8 days (median = 17.2; Table 1; Fig. 1). 
The 24 h sampling regime at 1 h intervals yielded signifi-
cantly more nocturnal than diurnal positional measure-
ments (t test, p = 0.011). The resulting median success 
rate for obtaining a positional measurement was there-
fore 49.4% (range 31.0–68.6%). Nevertheless, across both 
regimes, the system yielded a median of 203.5 (range 
65–690) CTG-GPS positional locations per animal. 
The median accuracy of each fix was 140 m (range 7 to 
4900 m; SD: 1632.8). For those fixes that were acquired, 
positional error rates were similar by day and night (t 
test, p = 0.059).

Despite CTG complementing the base GPS track-
ing, high fix failure rate resulted in unanticipated bat-
tery expenditure while devices searched for raccoons 
that were out of contact, likely in their diurnal dens. The 
maximum continuous operation lifespan (i.e., hourly 
sampling over 24  h) of collars was on average of just 
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23.0  days under continuous hourly operation (regime 
1) and 13.0  days under nighttime only/30  min opera-
tion (regime 2), substantially shorter than the projected 
90  days. Notably, the 30  min nighttime-only sampling 
regime supported relatively shorter sampling periods 
(12.2 days ± 6.7 SD) than the 1 h interval regime.

Evaluating data quality
Although the median number of fixes obtained for each 
individual was 204, the median effective sample size was 
only 34.1 (95% CI 2.2–133.9; Table 2). Nonetheless, these 
tracking data were of sufficient resolution to distinguish 
different inter-individual movement patterns, as demon-
strated by the variance in range crossing times between 
tracked raccoons (median = 12.2 h 95% CI 1.8–40.2). All 
tracked raccoons were determined to be range resident, 
as evidenced by asymptotic variograms (Fig.  2). Both 
the 60  min and 30  min sampling regimes yielded suffi-
cient data for home range analysis, although the 30 min 

sampling regime provided more information on the fine-
scale features of raccoon movement (Fig. 2c, d).

Home range estimates
The median home range size of the tracked raccoons was 
18.2  km2 (range 3.32  km2–223.4  km2) when estimated 
via AKDE, but only 9.1 km2 (range 3.31 km2–42.7 km2) 
when estimated via KDE with unmodeled autocorrela-
tion. Range estimates varied substantially between indi-
viduals, although the small number of individuals we 
were permitted to release for tracking precluded formal 
analysis of inter-individual differences. AKDE 95% home 
range estimates were larger than KDE range estimates by, 
on average, a factor of 2.7 ± 1.5 SD. KDE and AKDE were 
similar in just one instance where raccoon F1 yielded 
the largest effective sample size, and consequently the 
best resolved range (Fig.  3a, b). Conversely, the short 
sampling duration (4.4  days), and long range crossing 
time (47.3  h) of M1’s winter tracking session resulted 
in it having the lowest effective sample size, and for this 

Fig. 1 Map of the study site depicting the positional fixes of each collared raccoon
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individual KDE estimated its home range as being more 
than fivefold smaller when compared to AKDE (42.7 km2 
versus 223.4  km2 respectively). Although we tracked 
only one female, its 95% home range was substantially 
smaller than the median male range size (3.3 km2 versus 
24.1 km2 ± 71.4 SD).

Discussion
Broadly, this CTG system performed adequately in this 
suburban area of Tokyo, which had a saturation of FOMA 
base station antennae to triangulate from, and showed 
potential for further device refinement and system devel-
opment. Positional fixes were, on average, 54.3% success-
ful, although only 27.3% of these data had an error range 
of less than 50  m. Nevertheless, this prototype system 
informed a sufficient number of range crossing events to 
permit home range estimation for all raccoons tracked.

One notable area of weakness was device battery life, 
which did not match our expectations of lasting around 
90  days. Batteries actually lasted on average of just 
23.0  days under continuous hourly operation (regime 
1) and 13.0  days under nighttime only/30  min opera-
tion (regime 2). While the 30  min nighttime-only sam-
pling regime did not improve battery life significantly, it 
did provide more information on the fine-scale features 

of individual movement behaviors. It should be noted, 
however, that for animals with longer range crossing 
times that the longer duration provided by the 60  min 
sampling regime might be more suitable, and researchers 
should tailor their sampling protocol to both the ques-
tions of interest and the species’ biology. We infer that 
much of this reduced battery life was the result of rac-
coon denning behavior, preventing collars from contact-
ing GPS satellites and placing more functionality onto 
CTG triangulation using base stations, where positional 
accuracy relates to antennae coverage and signal power 
density. Extending battery life and balancing the trade-off 
between study longevity versus the resolution of track-
ing is thus a priority for future CTG deployments, where 
ever-improving lithium-ion battery technology (greater 
longevity with lighter weight [51]) should be incorpo-
rated into future design refinements. In this regard, we 
anticipate that total device weight could be reduced in 
the future.

In terms of home range analysis, these data supported 
effective AKDE home range estimates, which incorpo-
rated information on both the autocorrelation between 
relocations, and the positional error of each fix [52–54]. 
Statistically, our AKDE range estimates were at least 
twice as large as when computing conventional KDE 

Table 2 Home ranges, effective sample sizes (neffective), and range crossing times of collared raccoons

Home ranges were estimated at both the 95 and 50 quantiles via autocorrelated KDE and conventional KDE. Note the larger range estimates and wider confidence 
intervals of the AKDE method, which accurately accounts for (i) autocorrelation between relocations; (ii) the number of range crossing events observed; and (iii) the 
error associated with each fix

ID Range 
crossing time 
(h)

neffective AKDE

95% area  (km2) Min CI  (km2) Max CI  (km2) 50% area  (km2) Min CI  (km2) Max CI  (km2)

B1 10.19 133.90 10.33 8.30 12.59 3.15 2.53 3.83

B2 11.16 56.36 11.68 7.98 16.07 2.03 1.39 2.79

M1summer 47.34 2.20 223.40 46.44 536.66 56.16 11.68 134.92

M1winter 5.58 63.46 18.45 13.08 24.72 4.74 3.36 6.35

M2 40.18 11.79 26.52 11.01 48.72 6.00 2.49 11.02

M3 29.34 7.91 24.06 8.93 46.53 5.86 2.18 11.35

M4 13.28 11.91 17.96 7.63 32.64 4.88 2.07 8.87

F1 1.78 303.62 3.32 2.72 3.97 0.80 0.66 0.96

ID Range 
crossing time 
(h)

neffective KDE

95% area  (km2) Min CI  (km2) Max CI  (km2) 50% Area  (km2) Min CI  (km2) Max CI  (km2)

B1 10.19 133.90 9.32 8.63 10.03 2.72 2.52 2.93

B2 11.16 56.36 9.31 8.29 10.39 1.16 1.03 1.29

M1summer 47.34 2.20 42.65 32.85 53.72 10.12 7.79 12.74

M1winter 5.58 63.46 14.23 12.75 15.79 3.98 3.57 4.42

M2 40.18 11.79 7.21 6.36 8.10 1.10 0.97 1.24

M3 29.34 7.91 12.06 10.23 14.05 2.54 2.16 2.96

M4 13.28 11.91 6.85 5.59 8.23 1.69 1.38 2.03

F1 1.78 303.62 3.31 2.91 3.73 0.83 0.73 0.93
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ranges from these tracking data, which is consistent 
with the differences between KDE and AKDE observed 
in other studies [55]. Furthermore, despite KDE’s well-
documented pathology of underestimating home range 
areas on autocorrelated data [55], even the likely nega-
tively biased median 9.3 km2 home range area estimated 
via KDE using our novel CTG technology was more than 
fivefold larger than the ca. 1.7–2.0 km2 reported by other 
studies from Japan (e.g., [43, 56–58]). Noting that these 
previous studies on raccoons in Japan typically utilized 
radio tracking techniques combined with KDE and MCP 
methods. This suggests that a larger-scale effort to re-
establish the home range size of urban raccoons in Japan 
with more contemporary tracking technologies and ana-
lytical techniques might be warranted.

Two of the males we tracked, and the single female, 
were neutered, as required by permits to release raccoons 
in Japan, and this could have influenced their ranging 
behavior. One might, however, anticipate that neutered 
individuals would range less, not more. Note also that 

raccoons M1–M4 were only vasoligated (after negotia-
tion with government officials), so as not to affect tes-
tosterone production, and thus have less impact on their 
behavior. Furthermore, the individual M2, that had to be 
relocated to permit release, traveled ca. 5 km to return to 
the area in which it was trapped. Importantly, this pro-
vides anecdotal evidence that translocation is unlikely to 
be an efficient means of controlling local raccoon densi-
ties unless translocation distances are much greater than 
the upper range size, though we propose that a more 
thorough investigation into this topic is warranted.

Alternatively, greater home range size than expected 
may have been a feature of the distribution of key food 
resources in time and space in this heterogeneous sub-
urban habitat mosaic [59, 60]. For instance, Prange 
et  al. [61] also point out that the spatial distribution 
of anthropogenic resources and barriers to utilization 
can affect raccoon home ranges very substantially, 
which is especially applicable to core areas. The key, 
however, was that our prototype tracking system was 

Fig. 2 Variograms contrasting the two most representative individuals for a the 60 min sampling regime—individual B1; and b the 30 min 
sampling regime—individual M2. The black line and gray shading depict the semi-variance ± 95% CIs, whereas the red line and shading depict the 
fitted movement model ± 95% CIs of the model fit. The lower panels shows the fine-scale features of these variograms under c the 60 min sampling 
regime for raccoon B1; and d the 30 min sampling regime for raccoon M2. Note that in a and b the semi-variance reaches an asymptote, evidencing 
range residency—i.e., the time required to reach the asymptote is roughly the home range crossing time. Although both sampling regimes 
produced sufficient data for home range analysis, the 30 min sampling regime provided more fine-scale information, and an improved model fit at 
short time lags
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able to collect home range data under these realistic 
conditions applied to managing human–wildlife con-
flicts with synanthropic carnivores.

Conclusions
Accurate and effective home range analysis is crucial 
for planning the management of synanthropic car-
nivores, often involved in human wildlife conflicts in 
urban areas [8, 62, 63]. CTG tracking proved effec-
tive for yielding data suitable for AKDE analysis, and 
revealed larger home ranges than studies using more 
conventional tracking technologies. CTG therefore 
has substantial potential for development and refine-
ment as a telemetry application in urbanized environ-
ments that have good mobile network service where 
the deployment of other comparable technologies may 
sometimes be compromised.

Methods
Study area
This pilot investigation was carried out in the Ibaraki 
Prefecture, across 200 km2 in the suburbs of Bando City 
and Joso city (36°00′N; 139°54′E; Fig.  4). This is speci-
fied as a priority area in the “Common raccoon exter-
mination plan in the Ibaraki Prefecture” [44, 64] due 
to an ever-worsening raccoon problem since raccoons 
first colonized Ibaraki prefecture in the 1990s [65]. This 
is reflected by numbers trapped and killed: 5 (2008), 39 
(2009), 58 (2010), 74 (2011), 90 (2012), 120 (2013), 139 
(2014), 295 (2015) [44, 45], although trapping effort has 
also increased as the government attempts complete 
raccoon eradication from the entire area as part of the 
broader national extermination strategy. This area com-
prises high-density residential housing, interspersed with 
farmland, with a human population of 114,257 residents 
within the 246.7  km−2 combined metropolitan area of 

Fig. 3 Maps depicting KDE and AKDE home range estimates contrasting the most representative individuals F1 and M2. The top two panels 
depict the a KDE range and; b AKDE 95% area estimates ± 95% CIs for raccoon F1. F1’s short range crossing time (1.8 h), and long tracking duration 
(22.6 days) resulted in an effective sample size of 303.6, and both KDE and AKDE produced well-resolved ranges. The bottom two panels depict the 
c KDE range and; d AKDE 95% area estimates ± 95% CIs for raccoon M2. M2’s comparatively longer range crossing time (40.2 h), and shorter tracking 
duration (19.7 days) resulted in fewer range crossing events being observed, and an effective sample size of only 11.8. Here KDE underestimated the 
home range area by more than threefold, whereas AKDE produced a larger, and less biased range estimate
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Joso city and Bando city. Almost the entirety of this study 
region was covered by the FOMA network service (see 
NTT DOCOMO service coverage map: https ://www.
nttdo como.co.jp/suppo rt/area/).

Trapping raccoons and fitting CTG tracking devices
Under this Ibaraki Prefecture raccoon eradication pro-
gram, we gained special permission to be able to cap-
ture, instrument and release eight raccoons (seven 
adults and one yearling—the yearling was still growing 
and was not collared) between November 2010 Novem-
ber 2012, around the cities of Bando and Joso. Raccoons 
were trapped in modified Tomahawk Live Traps (Model 
207.5, Tomahawk, Wisconsin, USA) with optimized trig-
ger mechanisms [66], using roasted peanuts and marsh-
mallows as bait. Traps were checked and re-baited every 
morning. Captured raccoons were taken to a local vet-
erinary clinic, where they were immobilized by a veteri-
narian using isoflurane gas. Biometric parameters (e.g., 
head–body length, tail length, weight, age class, sex) were 
recorded for each animal, and tracking collars fitted. We 
constructed prototype collars using commercially avail-
able components to progress with this proof-of-concept 
study phase, acknowledging scope to substantially refine 

collar design if this technology proved worthy of further 
research and development. The tracking device com-
prised a CTG chipset with integrated GPS and FOMA 
transmitter, plus a 6000 mAh lithium-ion battery, housed 
in a smooth rounded waterproof rubber and silicon-
sealed module 80  mm × 50  mm × 40  mm, attached to 
nylon collar (38  mm width). Total assembly weight was 
257.8 ± 30.9 g, which is around 3% of the mean weight of 
raccoons used in this study (8.0 ± 1.2 kg; see Table 1) and 
consistently less than the 5% threshold recommended by 
the American Society of Mammalogists ([67], see also 
[68]). Raccoons are sturdy generalists that can vary their 
body weight by up to 50% seasonally [69], and were thus 
well suited as a model species for this deployment. Fur-
thermore, raccoons will attempt to remove and damage 
tracking devices, risking injury and jeopardizing study 
objectives, hence devices must be robust, although we 
fully recognize the importance of reducing device weight 
during future research and development [70].

Because this study was integrated into an invasive con-
trol program, the re-release of raccoons for tracking was 
only permitted after neutering. Males were castrated 
(n = 2/6: B1 and B2) or vasoligated (ligation of the vas 
deferens; n = 4/6: M1, M2, M3, and M4), and the single 

Fig. 4 Location of study area. The study area was located in central Japan (a), extending over Bando city and Joso city in the Ibaraki Prefecture. It 
covered 200 km2 including a 232 ha swamp called “Sugo-numa” (b). Rice and crop fields, forest and residential area are fragmented like a mosaic 
surrounded by rivers and creeks. All trap sites and all fixes were obtained using GPS/CTG on the FOMA network

https://www.nttdocomo.co.jp/support/area/
https://www.nttdocomo.co.jp/support/area/
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female tracked (F1) was administered a subcutaneous 
sterilization implant. We concede that this procedure 
is likely to influence the ranging behavior of individuals 
(in relation to mating, foraging should be less affected); 
however, this is representative of the type of management 
conditions often applied as a non-lethal alternative when 
managing human–wildlife conflicts with urban invasive 
carnivores (e.g., [71, 72]), and so provided an appropriate 
and representative test for our prototype system.

After this procedure, raccoons were left for at least 2 h 
to recover from anesthesia and then released at their cap-
ture sites whenever possible. Our permission from local 
government mandated that one male (M2) had to be 
released at a different location, 5.2  km from its capture 
site, due to strong objection from a farmer who had suf-
fered serious crop damage. Again, this was representative 
of the type of urban carnivore management we wanted 
to include in our test, where displaced individuals may 
range farther, and thus present a particular tracking chal-
lenge. All trapping and handling procedures conformed 
with the Association for the Study of Animal Behav-
ior guidelines for the treatment of animals in behavio-
ral research and teaching and the American Society of 
Mammalogy guidelines 2011 [67], and was approved by 
the Ethical Review of Tokyo University of Agriculture 
and Technology.

Raccoons are predominantly nocturnal and positional 
fixes could not be obtained when they were resting in 
their subterranean dens, registering an error code. There-
fore, as well as testing a sampling interval regime (regime 
1) that took a fix every hour throughout the 24 h period, 
including inactive periods when raccoons were denning/
undetectable (applied to raccoons B1 and B2), we also 
programmed a proportion of devices to take a fix every 
30 min (regime 2) (applied to raccoons F1, M1, M2, M3, 
M4) while raccoons were active/detectable at night. 
These were scheduled to operate from 1 h prior to sunset 
to 1 h after sunrise. Projecting from the battery capacity, 
we anticipated that collars should last for up to 90 days 
under both regimes [28].

System functionality
Positional information collected by CTG collars was sent 
to an internet carrier server using the FOMA network. 
These data could then be browsed using a local website 
service (‘The Location’ Inc.—Tokyo, Japan: e-Location 
System) (Fig. 5)—either on request by the user, or by set-
ting a scheduled download. This basic website service 
only provided the location of the CTG device on a base 
map, which necessitated that we develop a file transfer 
protocol (FTP) to download these data in an archivable 
file format, enabling subsequent analysis.

At the pre-set fix interval, the FOMA network’s 
e-Location system ordered a position that the GPS 
receiver, embedded in the CTG chipset, would try to 
deliver via the integral FOMA transmitter. In instances 
where GPS satellite signals could not provide a posi-
tional fix for a point in an individual’s movement tra-
jectory (e.g., due to interference/obstruction), CTG 
stepped in automatically to triangulate location from 
FOMA base station antennae in relation to the direc-
tivity (i.e., the power density radiated by an antenna) 
of the GPS referenced base station within range (up 
to three stations). CTG positions were then uploaded 
automatically by the e-Location server via FOMA net-
work, with no data stored onboard the collar. FOMA 
stations gave good coverage across this urban area, 
with potential to allow very accurate positioning, com-
plementing GPS, although it was anticipated that error 
might be greater with fewer antennae at the suburban 
margins of this area.

Fig. 5 Summary of the location information system used by CTG. The 
system is divided into three sections: location server, mobile phone 
network, GPS satellites, and device. Location data which are fixed 
by GPS positioning or mobile phone network are uploaded to the 
location information center. Operators need to access the location 
server to acquire the stored location date or a current location data
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In addition to longitude and latitude, the system also 
reported three useful error codes:

1. Error details: “Out of signal, Power Off” or “Unable 
to transmit to GPS-D”, indicating GPS positioning 
failures and FOMA triangulation failures, or failures 
in transmission.

2. Expected error tolerance range: “Within 50 m, within 
100 m, within 300 m, within 500 m, or over 500 m”.

3. Actual error range (m) from 8 to 4100 m.

Home range analysis
Currently, kernel density estimation (KDE [47]) is one of 
the most widely used estimators in ecological research 
[52]. KDE benefits from being statistically efficient, with-
out making any assumptions about the underlying dis-
tribution of data [47]. To obtain a home range estimate, 
KDE places small kernels of bandwidth h at each sampled 
location, and the average of these kernels provides an esti-
mate of the underlying probability density function (PDF 
[73]). The value of h is crucial, and is selected to mini-
mize the mean integrated squared error between the true 
PDF and its estimate [47]. Nevertheless, KDE also has 
limitations: for instance, the accuracy of the home range 
estimate is heavily influenced by the choice of the band-
width optimizer applied (e.g., [53]). More importantly, all 
conventional KDE bandwidth optimizers (e.g., Gaussian 
reference function, href, or least-squares cross-validation, 
hlscv) assume data are statistically independent, and when 
data exhibit a high degree of autocorrelation, home range 
areas are significantly underestimated [47, 55]. Because 
tracking data obtained by modern GPS devices, including 
the cell phone-based method employed here, have short 
fix intervals, they typically exhibit substantial autocorre-
lation [48]. Consequently, home range estimation using 
conventional KDE bandwidth optimization was inva-
lid here [55]. We therefore applied autocorrelated KDE 
(AKDE [47]) home range analysis, which can account for 
the autocorrelation structure inherent in tracking data 
[47–49].

For each individual, we estimated the 95% home range 
area using AKDE. AKDE is a generalization of conven-
tional Gaussian reference function KDE [47] that oper-
ates under the principle that animal movement generally 
exhibits two distinctive features: (i) autocorrelated posi-
tions and/or velocity; and (ii) a tendency to remain in a 
relatively consistent area (i.e., the ‘home range’ [48]). 
These features can be identified by variogram analysis, 
which plots the semi-variance in positions as a func-
tion of the time lag separating observations [54], and can 
be used to classify continuous time stochastic process 

movement models. Specifically, the variogram of a range 
resident individual should show a clear asymptote, indi-
cating asymptotic space use over time. The lack of a 
clear asymptote would suggest that either (i) the animal 
did not exhibit range resident behavior; or, crucially for 
this proof-of-concept application (ii) the range resident 
animal had not been tracked for a sufficient duration. 
Models containing these features can then be fitted to 
data using non-Markovian maximum likelihood estima-
tion [74]. The autocorrelation structure of these models 
can then be used to inform the bandwidth optimization 
[47]. Modeling the movement process in this way also 
allowed for information on positional error and irregu-
lar sampling regimes to be incorporated into home range 
estimates.

Following the workflow described by Calabrese et  al. 
[48], we fitted movement models to our relocation data 
via maximum likelihood, and the best fit model was 
selected based on AICc. Home ranges were then esti-
mated conditional on the selected model for each indi-
vidual, using the autocorrelated Gaussian reference 
function bandwidth relations developed by Fleming 
et al. [47], and implemented in the R package ctmm [48]. 
Notably, fitting movement models to relocation data also 
provides an estimate of the home range crossing time 
[48]. Furthermore, the information content of a tracking 
dataset is a function of both the duration of the observa-
tion period, and the time it takes an individual to cover 
its range [47]. As such, an increase in the sampling rate, 
duration, or number of fixes does not necessarily result 
in a proportional increase in the effective sample size 
(neffective [55]). Therefore, we calculated the effective sam-
ple size of each dataset following Fleming and Calabrese 
[49] as the estimated number of range crossing events 
observed during the observation period. We then used 
these effective sample sizes as indicators of the data qual-
ity returned from CTG tracking.

Importantly however, all of the previous works on the 
space use of urban raccoons have involved conventional 
home range estimation with unmodeled autocorrelation 
[61, 75, 76]. To enable a more complete comparison of 
our novel data to the results of other studies, using alter-
native tracking technology, we also applied conventional 
KDE analysis with the Gaussian reference function band-
width relationship [74] despite being invalid for these 
autocorrelated data. For this, we used the KDE method 
implemented in the R package ctmm [48], again follow-
ing the workflow described by Calabrese et al. [48].

Abbreviations
AKDE: Autocorrelated kernel density estimation; CTG : CTG-001G positional 
informational terminal; FOMA: Freedom of Mobile Multimedia Access; GPS: 
Global positioning system; HR: Home range; KDE: Kernel density estimation.
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