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Abstract 

Background: Over the past 15 years, the integration of localised passive telemetry networks into centralised data 
repositories has greatly enhanced our ability to monitor the presence and movements of highly mobile and migra-
tory species. These large-scale networks are now generating big data, allowing meta-analyses across multiple species, 
locations, and temporal scales. Broad-scale comparisons of animal movement metrics are constrained by the use of 
diverse analytical techniques among researchers. Accordingly, there is a need for a tool-set to assist in calculating ani-
mal movement metrics that can be easily applied to datasets from local studies to large-scale cooperative networks.

Results: We present a standardised framework and an associated analysis tool-set that facilitates the calculation of 
a range of activity space and movement metrics for passive telemetry datasets. Application of the tool-set is demon-
strated using data from the Integrated Marine Observing System continental-scale network of underwater acoustic 
receivers. We show how the metrics can: (1) be directly compared among multiple species monitored at multiple 
sites; (2) be compared among multiple species tagged at a single study site; and (3) assess changes in activity space 
metrics over time.

Conclusions: Establishing a framework and tool-set to analyse data from large-scale networks progresses the field of 
passive telemetry beyond the traditional individual-, species-, or location-centric approaches to facilitate national- or 
international-scale outputs that better address important questions in the field of movement ecology.
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Background
Advances in animal tracking technologies have vastly 
improved our capacity to monitor animal movements 
over large temporal and spatial extents [e.g. 1, 2]. One 
of the most widely used approaches is to deploy passive 
tracking arrays, where animal-borne radio or acoustic 
transmitters are detected by an array of static receiver sta-
tions [3]. This technology enables the tracking of a large 

number of individuals for longer periods of time than 
can be achieved using larger, more expensive satellite 
or GPS devices. Passive tracking approaches have been 
used extensively in terrestrial [4] and aquatic systems [5] 
and have led to globally important findings in conserva-
tion biology and fisheries science [e.g. 6]. Increasing use 
of these technologies combined with recognition of their 
cost-effectiveness has seen the development of local and 
international collaborative research networks [e.g. 4, 7].

Collaborative, passive telemetry networks have been 
established around the world to share data between 
receiver arrays and projects. Aquatic networks include 
the Ocean Tracking Network [Canada; 7], Florida 
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Atlantic Coast Telemetry [USA; 8], Acoustic Track-
ing Array Platform [South Africa; 9], and others sum-
marised in Hussey et al. [5], while terrestrial networks 
include LifeWatch [Belgium; 10] and Motus Wildlife 
Tracking System [North America; 4]. In Australia, a 
collaborative acoustic tracking network is supported 
with national infrastructure through the Integrated 
Marine Observing System (IMOS) [11]. The objective 
of the IMOS Animal Tracking Facility (IMOS ATF) is to 
facilitate national-scale movement studies through the 
provision of a national backbone of tracking infrastruc-
ture and a national data repository of detections and 
associated deployment records (https ://anima ltrac king.
aodn.org.au/) [12]. The establishment of large-scale col-
laborative networks has created the opportunity for 
researchers to share data within the animal telemetry 
community [13, 14]. This has increased the geographic 
scope at which ecological data can be collected, facili-
tating investigations of broad-scale ecological processes 
across species, locations, and time [15].

Despite implementation of network infrastruc-
ture and data sharing arrangements, analysis of ani-
mal tracking data is most commonly conducted with 
a species-, habitat-, or site-centric focus [6]. The abil-
ity to explore broad ecological questions relies, in 
part, to accessing a suitable tool-set that can facilitate 
analyses of these large data sets. One of the benefits 
of such a tool-set is the capacity to produce standard-
ised metrics to allow direct comparison across study 
sites and species. However, no such tool-sets are avail-
able for analysing passive telemetry data. While there 
are some commonly used analysis methods (e.g. home 
range analysis, Residency Index), variation in analytical 
approaches between studies typically precludes com-
parative analyses [e.g. 16–18]. For example, activity 
space estimates (95% contour areas from fixed kernel 
utilisation distributions; KUD) calculated from passive 
acoustic monitoring have been published for five spe-
cies at a single location, Mangrove Bay on Ningaloo 
Reef, Western Australia, including herbivores [Kypho-
sus bigibbus 1.6  km2; 19], mesopredators [Lethrinus 
nebulosus 8.5  km2; 20] and sharks [Carcharhinus mel-
anopterus 12.8  km2; Carcharhinus amblyrhynchos 
19.6  km2; 21, Carcharhinus cautus 3.6  km2; 22]. In 
each case, different analytical approaches that account 
for spatiotemporal autocorrelation (e.g. estimation of 
short-term centres of activity, randomisation within 
receiver range) in subtly different ways and a variety of 
smoothing factors were used, making direct compari-
sons unreliable because KUD estimations are sensitive 
to the chosen smoothing factor [23]. Application of a 
single tool-set with defined parameters could produce 
directly comparable results for each of these species.

Our proposed universal framework and associated 
tool-set include a number of analysis techniques that are 
frequently used in passive telemetry studies [24]. Passive 
telemetry studies use detection patterns of a tagged ani-
mal within a fixed array to understand movement pat-
terns, habitat use, and activity space. Raw detection data 
are typically used to calculate metrics of detection (e.g. 
number of detections; number of days detected; number 
of receivers detected on), dispersal (e.g. distances and 
bearings between consecutive detections; distances and 
bearings between each detection and release site), and 
activity space (e.g. home range areas). Here, we provide a 
universal framework and workflow to standardise the cal-
culation of these commonly used animal movement met-
rics and demonstrate how this approach can be applied 
across large-scale telemetry networks.

The VTrack package, developed and used in the R sta-
tistical environment [25], provides a suite of analysis 
tools to calculate animal movement metrics using passive 
acoustic telemetry data [26]. VTrack was initially devel-
oped for linear systems (e.g. rivers) and did not provide 
standardised metrics of activity space of tagged animals. 
The original package was also not built to integrate data 
held within large-scale telemetry data repositories with 
multiple data contributors. We have extended the VTrack 
package to include the Animal Tracking Toolbox (ATT), 
a tool-set that includes a collection of new functions 
to estimate metrics of detection, dispersal, short-term 
centres of activity and home range from passive telem-
etry datasets. The methods used to calculate home range 
areas using node-based datasets are constantly evolving, 
with a multitude of techniques being used and developed 
to provide more accurate estimates of activity space. The 
ATT provides a repeatable technique to calculate esti-
mates of activity space using three commonly used meth-
ods: the minimum convex polygon (MCP), fixed kernel 
utilisation distribution (KUD), and kernel utilisation dis-
tributions estimated using Brownian Bridge movement 
models (often referred to as UD, henceforth referred to as 
BB-KUD here).

The new toolbox includes the capacity to synthe-
sise data from cooperative animal tracking networks. 
These new functions are designed to be used in con-
junction with existing R packages like adehabitatHR 
[27] and sp [28] that have themselves become stand-
ard tools used to assess animal movement and spatial 
data. Using three case studies of acoustically tracked 
fishes in Australia, we describe this new functionality 
and how it can synthesise data collected from mul-
tiple projects within a large-scale tracking network 
and archived within the IMOS ATF. Our tool-set and 
workflow therein can be applied to other large-scale 
acoustic telemetry data infrastructure or other animal 

https://animaltracking.aodn.org.au/
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Page 3 of 14Udyawer et al. Anim Biotelemetry            (2018) 6:17 

movement datasets collected by an array of passive 
receivers (e.g. fixed radio towers or passive integrated 
transponder tag antennas).

Results
The ATT is a collection of functions within the VTrack 
package (Table  1) implemented in the R statistical 
environment [25] (Fig.  1, Table  1). These functions 
can be run in series to implement our proposed frame-
work and to transform individual detection data files 
with metadata into a range of standardised detection 
metrics, dispersal metrics, and activity space met-
rics (Fig.  1, see Appendix for proposed R workflow 
using ATT functions). Node-based telemetry net-
works typically comprise large numbers of static sig-
nal receivers installed over broad geographic areas. 
These networks record positional and sensor data 
from signal transmitters deployed on multiple animals 
by many research groups and institutions. The sheer 
scale of these networks means a strict quality control 
(QC) process is an essential first step to ensure data 
utilised in subsequent analyses are complete and accu-
rate. In the present study, acoustic detection data from 
the IMOS ATF acoustic telemetry network underwent 
a flexible QC procedure that validate individual raw 
detections based on a series of tests to identify and 
discard false detections within the network [12]. We 
emphasise the importance of QC procedures prior to 
analysis of passive telemetry data for studies using data 
from a single site or installation, to large-scale cooper-
ative networks consisting of multiple users and multi-
regional installations. 

Case Study 1: Activity space and dispersal metrics 
of multiple species across multiple study sites
Dispersal metrics and activity space were compared 
among four species (Yellowfin Bream, Acanthopagrus 
australis n = 28 tags; Yellowtail Kingfish, Seriola lalandi 
n = 24 tags; Grey Reef Shark, Carcharhinus amblyrhyn-
chos n = 27 tags; and Bull Shark, Carcharhinus leucas 
n = 28 tags) and across multiple sites around Australia 
(Fig.  2). To enable cross-site comparisons, all models 
were weighted by the estimated size of the array (i.e. area 
encompassing listening ranges of regional installations). 
Within each species, individuals displayed similar mean 
step dispersal distances among study sites (ANOVA; 
p > 0.05 for all species comparisons, Fig.  2). Animals 
monitored in southern sites displayed larger or equiva-
lent maximum step dispersal distances than at north-
ern sites even with installation array size considered in 
models (Fig. 2, Table 2). Mean estimated activity spaces 
(area within 95% contour of Brownian bridge kernel uti-
lisation distributions; 95% BB-KUD) were significantly 
larger in Yellowtail Kingfish and Bull Sharks in southern 
sites (ANOVA; p < 0.05, Fig. 2), but inter-site differences 
in mean activity space were not significant in Yellowfin 
Bream and Grey Reef Sharks (Fig.  2, Table  2). Among 
species groups, measurements of dispersal between con-
secutive detections and overall 95% BB-KUD showed that 
Bull Sharks displayed the largest mean maximum step 
dispersal distances (511.6 ± 182.3  km) and maintained 
large activity spaces (10,066.3 ± 6732.9 km2) followed by 
Yellowtail Kingfish (115.7 ± 31.2  km2) (Fig.  2; Table  2). 
Grey Reef Sharks and Yellowfin Bream displayed small 
mean maximum step dispersal distances (13.5 ± 4.5  km 
and 72.2 ± 19.1  km, respectively) and maintained 

Table 1 Summary of the Animal Tracking Toolbox (ATT)

The ATT is a collection of functions in the VTrack package that enables quick, standardised estimates of detection, dispersal and activity space metrics from telemetry 
data obtained using an array of fixed receiver stations and enables standardised analysis from large-scale cooperative passive telemetry networks

Function Summary

setupData() Sets up input data for smooth functioning of subsequent ATT functions. Produces an ‘ATT’ classed object consisting a list 
of detection data, receiver locations and tag information

detectionSummary() Requires input object of class ‘ATT’. Produces a list containing standard detection metrics for:
(1) full tag period and
(2) user defined temporal subsets (i.e. monthly, weekly detection metrics)

dispersalSummary() Requires input object of class ‘ATT’. Produces a list containing dispersal distances and bearings between:
(1) consecutive detections and
(2) between each detection and tag release site

COA() Requires input object of class ‘ATT’. Produces a ‘COA’ classed object consisting of a data table with short-term centres of 
activity within user defined time steps

HRSummary() Requires input object of class ‘COA’. Produces a list containing standardised activity space metrics (i.e. Minimum convex 
polygon area, 50% and 95% KUD and BB-KUD contour areas) for:
(1) full period of tag life, and
(2) user-defined subsets (i.e. monthly, weekly activity spaces)
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restricted activity spaces (95% BB-KUD; 26.8 ± 9.4  km2 
and 7.9 ± 3.6 km2, respectively) (Fig. 2).

Case Study 2: Activity space and dispersal metrics 
of multiple species within a single site
Activity space metrics of individuals from the three co-
occurring species (Yellowfin Bream n = 3, Yellowtail 
Kingfish n = 3, and Bull Shark n = 3) in Sydney Harbour 
were used to compare activity space metrics within a 
single site. A restricted number of individuals (three per 
species) were used to provide an illustrative example. 
Sample sizes are likely to be substantially larger in stud-
ies undertaking formal quantitative comparisons. The 
BB-KUD estimates showed that Bull Sharks displayed the 

largest activity spaces (95% BB-KUD; 1204.3 ± 158.1 km2; 
Fig. 3) and extended outside the Harbour area, followed 
by Yellowtail Kingfish (40.7 ± 29.4 km2; Table 3). In con-
trast, Yellowfin Bream displayed restricted activity spaces 
(6.88 ± 2.9 km2) within only one tributary of the system 
(Fig. 3).

Case Study 3: Examining temporal patterns in activity 
space across multiple species
Patterns in asymptotic regression curves of cumu-
lative minimum convex polygon (MCP) areas 
were most similar between the two shark spe-
cies (Fig.  4). The majority of tagged Yellowtail 

Fig. 1 Schematic of the proposed standardisation framework and workflow for calculating detection, dispersal, and activity space metrics from 
passive acoustic telemetry network data using new functions from the Animal Tracking Toolbox (ATT) (Table 1). Proposed workflow in R, input data 
requirements, and specifications of output are provided in the Appendix. Example detection data displayed in the figure are from a Tiger Shark 
(Galeocervo cuvier) passively monitored around Heron and One Tree Islands using the IMOS Animal Tracking Facility.
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Kingfish displayed a stable MCP area relatively quickly 
(regression growth rate = 1.26 ± 0.29; doubling 
time = 0.55 ± 0.19 months) compared to the shark spe-
cies (Bull Sharks: regression growth rate = 0.16 ± 0.12; 
doubling time = 4.28 ± 0.81  months; Grey Reef 
Shark: regression growth rate = 0.08 ± 0.13; dou-
bling time = 7.89 ± 1.08  months; Fig.  4). In contrast, 
Yellowfin Bream reached a stable MCP area much 

later (regression growth rate = 0.07 ± 0.43; doubling 
time = 10.02 ± 5.26 months).

Discussion
We show that the ATT produces robust comparisons for 
not only single-species, regional-scale datasets but also 
among multiple species and locations in continental-
scale datasets through standardisation in parameterisa-
tion and calculation of animal movement metrics. The 

Fig. 2 Case study 1: Comparison of movement and activity space metrics across four species (Green: Grey Reef Shark [n = 27], Red: Bull Shark 
[n = 28], Blue: Yellowfin Bream [n = 28], Yellow: Yellowtail Kingfish [n = 24]) tagged at multiple sites. Numbers in parentheses on y axis represent 
sample sizes of species monitored at each site. Boxplots display the range, 25% and 75% quantiles with points representing median values for 
dispersal step distances (km) estimated from raw detections and extent of activity space (95% BB-KUD;  km2) estimated using COA estimates. 
Coloured points on maps represent release locations of tagged animals at all sites, with black points representing position of acoustic array network 
in the region used to monitor tagged animals. F and p values for within species ANOVA comparisons are displayed in each panel. Area of site array 
was incorporated into ANOVA comparisons to allow cross-site comparisons
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ability to calculate repeatable, standardised metrics per-
mits exploration of variability at large geographic scales, 
at a population level, and potentially across a species’ 
entire range. Further, the case studies highlight how the 
ATT can differentiate movement metrics within and 

between species, locations, and studies. Use of utilisa-
tion distributions based on Brownian Bridge movement 
models (BB-KUD) incorporate movement paths into 
activity space metrics and has been shown to more accu-
rately represent activity spaces in mobile animals [29]. In 

Table 2 Case Study 1: Summary movement and  activity space metrics calculated for  four species at  multiple sites 
within Australia

Northern and southern release sites for each species are represented in Fig. 2. Mean ± SD of step dispersal metrics and KUD estimates across individuals tagged at 
each release site. The area of site arrays was estimated by calculating the area encompassing the listening ranges of all receivers within each regional installation. Area 
of site array was incorporated within each ANOVA comparison presented in Fig. 2

Species Number 
of animals 
tagged (n)

Site 
of animal 
release

Area of site 
array  (km2)

Step dispersal metrics (km) Brownian bridge KUD  (km2)

Mean step 
dispersal 
distance

Maximum 
step dispersal 
distance

Mean core activity 
space (50% contour)

Mean extent 
of activity space 
(95% contour)

Grey Reef Shark 
(Carcharhinus 
amblyrhynchos)

14 North 51.67 0.16 ± 0.04 2.09 ± 0.36 0.79 ± 0.36 10.65 ± 1.99

13 South 326.91 0.72 ± 0.55 21.65 ± 7.42 1.48 ± 0.48 30.31 ± 11.36

Bull Shark (Car-
charhinus leucas)

14 North 917.62 3.66 ± 1.62 405.67 ± 260.11 1857.19 ± 274.32 9049.31 ± 1888.96

14 South 3839.43 4.43 ± 1.74 735.34 ± 134.89 49,289.13 ± 38,812.96 263,531.2 ± 180,512.6

Yellowfin Bream 
(Acanthopagrus 
australis)

16 North 1121.15 7.28 ± 4.76 84.35 ± 25.42 0.87 ± 0.42 8.09 ± 4.59

12 South 951.12 0.28 ± 0.13 41.75 ± 19.36 7.63 ± 6.53 30.98 ± 29.50

Yellowtail Kingfish 
(Seriola lalandi)

14 North 2111.19 2.06 ± 1.51 82.76 ± 29.66 5.01 ± 2.27 126.28 ± 50.02

10 South 2267.13 11.99 ± 10.48 200.47 ± 76.28 14,988.99 ± 14,988.85 104,264.4 ± 104,262.6

Fig. 3 Case study 2: Comparison of activity spaces of multiple species within Sydney Harbour. a Centres of activity (60 min time step, coloured 
crosses) Minimum convex polygons (broken coloured polygons) and Brownian bridge kernel utilisation distributions (50% contour = filled dark 
polygons; 95% contour = filled light polygons) for a representative individual of Yellowfin Bream (blue), Yellowtail Kingfish (yellow), and Bull 
Shark (red). Black points represent locations of VR2 W receivers. b–e Boxplots comparing 50% BB-KUD, 95% BB-KUD, MCP areas, and numbers of 
detections among the three species (blue: Yellowfin Bream n = 3, yellow: Yellowtail Kingfish n = 3, and red: Bull Shark n = 3)
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the context of large-scale passive telemetry networks like 
the IMOS ATF, the use of BB-KUD to estimate activity 
space metrics incorporates movements between regional 
installations. The tool-set demonstrated here formal-
ises the use of short-term centres of activity (COA) with 
kernel estimation techniques. The use of COA prior to 
kernel probability distribution calculation accounts for 
i) varied transmission settings often utilised by multi-
ple researchers within a cooperative network, ii) spa-
tial biases inherent to telemetry datasets obtained from 
fixed receiver stations, and iii) incorporate movements of 
tagged animals between fixed receivers in activity space 
metric calculations.

The utility of the proposed framework and ATT, 
exemplified by the case studies, is the ability to reliably 

compare dispersal and activity space metrics among mul-
tiple species representing different functional movement 
classes [15], tracked at a single location. As the param-
eters used in calculation of the metrics (i.e. smoothing 
parameters, COA time steps) were identical in the Syd-
ney Harbour example, direct comparison of species was 
possible. Bull Sharks, which are known to be detected 
across distant receivers [15], had the largest activity 
centres and dispersal distances, but the highest activ-
ity centre remained within the estuary. This is consistent 
with previous findings that Bull Sharks can spend large 
amounts of time in a restricted area between large-scale 
movements [e.g. 30]. Yellowtail Kingfish and Yellowfin 
Bream had core activity centres approximately 9.8% and 
1.5% (respectively) of those for Bull Sharks with Yellowfin 

Table 3 Case study 2: Summary detection and  activity space metrics measured in  tagged individuals within  Sydney 
Harbour

Mean ± SD of detection and activity space metrics across each species tagged at Sydney Harbour

Species Number of detections 
within Sydney Harbour

Minimum Convex 
Polygon area  (km2)

Brownian bridge KUD area

50% BB-KUD area  (km2) 95% BB-KUD area  (km2)

Yellowfin Bream (n = 3) 372.67 ± 342.82 11.96 ± 6.77 1.73 ± 0.79 6.88 ± 2.94

Yellowtail Kingfish (n = 3) 1615.33 ± 1041.26 36.11 ± 17.92 5.87 ± 5.19 40.72 ± 29.39

Bull Shark (n = 3) 1624.00 ± 712.68 151.01 ± 36.13 189.99 ± 6.45 1204.30 ± 158.12

Fig. 4 Case study 3: Temporal patterns in activity space in multiple species. Asymptotic regression models of cumulative minimum convex polygon 
(MCP) in four species (yellow: Yellowtail Kingfish [n = 24]; blue: Yellowfin Bream [n = 28]; green: Grey Reef Shark [n = 27]; red: Bull Shark [n = 28]). 
Points represent mean values of cumulative MCP for each species each month after release. Lines represent fitted asymptotic regression model with 
shaded area representing 95% confidence intervals. Doubling times of species-specific regression models presented in months
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Bream displaying minimal dispersal. This is consist-
ent with a meta-analysis that identified these species as 
site-attached with occasional dispersal [15]. While some 
variability of movement patterns is expected within a 
functional movement class, the approach applied here 
allows a direct test of these classifications based on uni-
form and comparable metrics. Variability in individual 
movements patterns can result in individuals of a species 
belonging to more than one functional movement class 
[15], and a standardised approach to estimating metrics 
improves our ability to detect and define this variability.

Applications of the ATT framework
The ATT framework demonstrated above provides 
opportunities to address important questions at spa-
tiotemporal scales not previously possible. Such ques-
tions include latitudinal comparisons and assessments 
of responses to global change, as well as exploration of 
fundamental ecological and evolutionary questions [31]. 
For example, Yellowfin Bream (Acanthopagrus austra-
lis) occur from 19°S to 38°S spanning over 19 degrees of 
latitude along Australia’s east coast [32]. Passive animal 
tracking infrastructure spans most of this range, offering 
significant potential for comparative studies, but receiver 
arrays are managed across three state jurisdictions (i.e. 
Queensland, New South Wales, and Victoria). Several 
passive telemetry studies have been published on this 
species from investigations at four locations using a range 
of different metrics [e.g. 33–35]. While we do not dispute 
that each of these studies was valid within its individual 
scope, an opportunity was lost because direct behavioural 
comparisons and detection of changes in behaviour over 
time at a single location are impossible without full re-
analysis. Robust comparisons would be greatly facilitated 
by employing the approach we have demonstrated here 
and may be particularly important since shifting environ-
mental conditions in the ocean is of critical importance 
to understanding species’ ability to adapt over spatial and 
temporal scales [36].

Comparative approaches have long been used to 
develop and test ecological and evolutionary questions 
[37], such as using morphometrics [38], stable isotope 
composition [39], or trophic level [40] to make inferences 
about differing ecological niches or behaviour in different 
environments. Comparative approaches based on passive 
telemetry are becoming increasingly common for inter-
species comparisons, but are usually conducted as part of 
a single study [41, 42], or to contrast habitat use within 
species at different locations [43]. The benefits of stand-
ardising the approaches used to quantify behavioural 
parameters such as home range size have been noted 
in comparative studies [44]. This potential has yet to be 
realised, but is exemplified by case study 2, where direct 

comparison among species within a single array revealed 
both inter-species overlap and differential habitat use 
patterns.

Limitations and assumptions
The metrics presented here have a solid foundation in 
spatial ecology [e.g. 45] and have previously been applied 
to a large number of species [e.g. 5, 46]. The benefit of 
the ATT is that this tool-set combines a large number of 
standard analyses used in acoustic telemetry into a sin-
gle R package, accepts standard file formats, can be easily 
applied to a wide range of telemetry datasets in a repeat-
able fashion, and may be applied to a large number of 
individuals simultaneously (see Appendix). However, we 
caution that each metric has its own set of limitations, 
and these in turn require that some caveats be placed on 
the outputs derived.

The COA method [47] is currently included in the 
ATT (i.e. ‘COA’ function) and provides a means to tem-
porally standardise detection data within the listening 
range of the receiver array. The process of estimating 
COA positions, however, assumes a homogeneous detec-
tion probability between all signal receiver stations (i.e. 
hydrophones, radio towers, PIT tag antennas). In reality, 
environmental and temporal factors along with transmit-
ter specifications often influence detection probability 
[41, 48, 49]. Therefore, when analysing detection data 
from large-scale networks using the ATT, spatiotempo-
ral variations in receiver detection probability need to be 
carefully considered and addressed using other methodo-
logical techniques (i.e. selecting appropriate radio-trans-
mitter power outputs, range testing, sentinel tags).

Although the ATT allows for calculation of standardised 
dispersal and activity space metrics, the design of regional 
telemetry installations (e.g. curtains, grids) can heavily 
influence the output. Therefore, caution must be taken 
when directly comparing metrics from sites that have con-
siderably different array designs. As in case study 1, proper-
ties of regional installations (e.g. area of array; number and 
spacing of receivers, grid vs. linear) should be incorporated 
into site comparisons, either through model weights (as 
undertaken in the present study) or through the calculation 
of weighted indices. Similarly, daily detection frequency 
and period of tag operation are used to calculate a ‘Detec-
tion Index’ over the full period of tagging as well as over 
temporal subsets. This index is calculated similarly to pre-
viously published metrics of residency [often referred to as 
Residency Index; e.g. 50]. However, the Detection Index 
provides a metric to assess the ‘detectability’ of an indi-
vidual within the large-scale receiver network, and not a 
measure of residence within any particular location. There-
fore, this index must be used and interpreted cautiously 
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when conducting multi-site and landscape-level compara-
tive spatial analyses.

Conclusions
Development of a tool-set for analysing data from a large-
scale network moves the field of spatial ecology beyond 
single-species or single-location approaches to facilitate 
national- and international-scale outputs that better reflect 
true animal distribution and connectivity. The main moti-
vation for the development of the new functions within 
the ATT (Table  1, Fig.  1) was to facilitate the application 
of the proposed standardised framework and across large-
scale networks, principally for analyses among species and 
localities. When adopting the proposed framework and 
the ATT, it remains important to carefully consider the 
research questions being addressed, and whether a cus-
tomised approach (e.g. tailored to the study site and array 
design) may be required. Although the case studies pre-
sented here demonstrate the capacity to extract standard-
ised detection metrics, dispersal metrics, and activity space 
metrics from detection data acquired using passive acous-
tic telemetry (i.e. IMOS ATF database), this framework and 
tool-set can be applied to analyse other node-based passive 
telemetry datasets (e.g. from radio telemetry or radio-fre-
quency identification; RFID) across a broad range of sys-
tems including marine [e.g. Ocean Tracking Network; 7], 
freshwater [e.g. GLATOS; http://glato s.glos.us], or terres-
trial environments [e.g. Motus; 4]. The data acquired from 
these networks are similar to those exemplified here and 
consist of node-based detections which can be analysed 
through the proposed standardised framework and ATT to 
estimate metrics of activity space from tagged animals. The 
long-term benefit of adopting this tool-set and approach 
will likely arise from the capacity to compare results among 
arrays and support meta-analyses across substantial spa-
tial scales to effectively address key questions in the field 
of animal movement ecology [2, 31]. Additionally, we hope 
the adoption of the ATT will lead to increased collabora-
tion between research and governmental agencies that cur-
rently utilise these technologies. The use of a standardised 
framework and calculation of comparable metrics across 
research groups, states, or countries will aid in designing 
appropriate cross-jurisdictional management and conser-
vation policy for animals that migrate large distances. The 
proof of this concept will be the relative scale of its adop-
tion by the research community.

Methods
A universal approach for standardised metrics of activity 
space and movement
Our framework follows a simple workflow within the R 
environment that allows for efficient calculation of detec-
tion, dispersal, and activity space metrics from uniquely 

identified tagged animals for the full life of tags and 
within user-defined temporal subsets. By standardising 
our workflow, we ensure that our calculation of metrics 
is consistent regardless of whether they were collected 
from a singular array, or across multiple projects within 
a large-scale tracking network. An example R workflow 
with R script is provided in the Appendix to highlight 
the new functionality of the ATT that allows estimation 
of detection, dispersal, and activity space metrics from 
passive telemetry data. The proposed workflow is briefly 
summarised here:

(1) Setting up data

We acknowledge that multiple data structures are uti-
lised by different passive telemetry technology providers 
(e.g. VEMCO, Lotek, BioMark) and by different coopera-
tive networks (e.g. IMOS ATF, Motus, OTN). To enable 
an efficient workflow, the ‘setupData’ function within the 
ATT is used to standardise input data for subsequent 
functions (Table 1, Fig. 1). The function outputs an ‘ATT’ 
object that consists of a list of three key data sets asso-
ciated with any passive telemetry data; a) detection data 
(e.g. detection timestamp, coordinates of detection), b) 
metadata information for each tag (e.g. tag life, species, 
biometrics of animal tagged), and c) receiver station 
information (e.g. locations of fixed receivers).

(2) Detection metrics

The new ATT functions within the VTrack package 
enables the quick calculation of a number of commonly 
reported detection metrics including number of detec-
tions from a given tag, number of days detected, num-
ber of receivers the tag was detected on, and a Detection 
Index (commonly referred to as residency index) through 
the new ‘detectionSummary’ function (Fig.  1, Table  1). 
The Detection Index is simply the number of days a tag 
was detected on the array of receivers divided by the total 
number of days the tag was active. For this, additional 
information on tag life is required. The ‘detectionSum-
mary’ function produces a list object with standardised 
detection metrics for the full tag life, as well as within 
specified temporal bins (e.g. monthly, weekly detection 
metrics).

(3) Dispersal metrics

Dispersal metrics commonly calculated using node-
based telemetry can provide information on dispersal 
potential of tagged animals with estimates of maximum 
dispersal capacities and velocities. Although such met-
rics estimated from fixed receiver arrays are dependent 

http://glatos.glos.us
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on array design and may be coarser in resolution than 
other technologies (e.g. satellite and GPS telemetry), 
they provide critical information on species too small 
to carry satellite tags and for longer periods. The ATT 
allows for quick estimation of two types of movement 
metrics; dispersal distances (in metres) and bearing (in 
degrees) between consecutive detections and between 
each detection, and tag release location, using the ‘dis-
persalSummary’ function (Fig. 1, Table 1). ‘dispersalSum-
mary’ leverages the sp functions ‘spDistN1’ to calculate 
distances and ‘gzAzimuth’ to calculate bearings between 
detection locations. These metrics can then be used to 
conduct further in-depth analyses. However, as men-
tioned previously care must be taken when analysing and 
interpreting dispersal distances and bearings from static 
receiver arrays, with biases related to array design con-
sidered in further analyses.

(4) Activity space metrics

The coordination of large-scale passive telemetry net-
works can extend the listening range of smaller regional 
installations and enhance estimates of how much space 
far roaming animals occupy within a landscape or sea-
scape. Detection data from a fixed array of receivers are 
inherently spatially biased depending on array design. 
The ATT workflow enables the estimation of activ-
ity space areas by accounting for the inherent spatial 
and temporal biases in telemetry data collected using a 
fixed array of receivers, by first estimating COA within 
user defined temporal bins [see 47] (Fig.  1). Addition-
ally, the use of COAs account for differences in sig-
nal transmission delays that may be used by multiple 
researchers across a large-scale cooperative network. The 
toolbox uses the ‘COA’ function to estimate COA posi-
tions within user defined temporal bins (Table 1).

The ATT uses COA estimates from detection data to 
estimate activity space metrics using three commonly 
used techniques; a polygon-based technique: minimum 
convex polygons (henceforth MCP,  m2), and two kernel-
based probability distribution techniques: fixed kernel 
utilisation distribution (henceforth KUD;  m2) and utili-
sation distributions using a Brownian Bridge movement 
model (henceforth BB-KUD;  m2). The functionality of 
the adehabitatHR package is used within the ‘HRSum-
mary’ function to estimate the MCPs (‘mcp’ function), 
fixed KUDs (‘kernelUD’ function), and BB-KUDs (‘ker-
nelbb’ function) [see [27] for details]. Core activity 
spaces (i.e. core home range) are estimated by calculat-
ing the area within the 50% contour of KUDs; similarly, 
the extent of activity spaces is estimated by calculating 
the area within the 95% contour for kernel-based activ-
ity space metrics (i.e. using the ‘kernel.area’ function in 

adehabitatHR). Area of 100% MCPs, core, and extent 
of KUDs are calculated over the full tag life and within 
user-defined temporal subsets (i.e. monthly, weekly). 
In node-based studies, it is important to incorporate 
detections from every node the animals were detected 
at; thus, the 100% MCPs is utilised as a default; how-
ever, other thresholds can be applied. In addition, the 
‘HRSummary’ function can also be set up to calculate 
cumulative activity space areas (e.g. cumulative MCPs, 
KUDs or BB-KUDs) for each temporal subset across the 
full tag life. Cumulative activity spaces for each tempo-
ral bin (i.e. each month or week) are calculated by add-
ing COA locations from the next temporal bin to all 
previous COA locations for each tag. Trends in cumu-
lative activity space metrics across the tag life can pro-
vide information on how tagged animals explore new 
areas within the receiver array and can identify periods 
of increased movement patterns [45].

The ATT functions highlighted above accommo-
date user-defined parameters to specify temporal 
sub-setting, time step binning for centre of activity cal-
culations [see 47], types [i.e. MCP, fixed KUD, Brown-
ian Bridge KUD], and parameters for activity space 
metric calculations [i.e. smoothing factor, extent, and 
grid size; see 27]; however, default values are provided 
to enable standardisation and ultimately comparison 
across multiple species and sites (see Appendix for 
details). The selection of smoothing parameters can 
greatly influence estimates of activity space when using 
utilisation distribution methods (Fig. 5) and ultimately 
effect capacity for direct comparison of outputs. There-
fore, when reporting results from calculated metrics 
using the ATT, any user-defined parameters need to be 
highlighted to enable complete interpretation of esti-
mated metrics.

Spatiotemporal autocorrelation using passive telemetry 
data
One key process within the proposed approach and 
workflow is the estimation of COA using the ‘COA’ func-
tion prior to calculation of activity spaces (i.e. for MCP, 
KUD, and BB-KUD area estimations; Fig. 1). This process 
attempts to account for the inherent biases in detection 
data from a fixed receiver array and across multiple tag 
transmission settings, by estimating positions of tagged 
animals within fixed time steps weighted by detections 
within the entire array [47]. The use of COA in conse-
quent activity space metric calculations also accounts 
for biases in detections within the listening range of the 
network of arrays, where estimated activity spaces incor-
porate large dispersals across multiple arrays within the 
cooperative network.
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Parameterising activity space metrics
The approach includes activity space estimation using 
commonly used techniques including MCPs and fixed 
KUD as well as techniques that incorporate movement 
paths by utilising the Brownian Bridge movement model 
[BB-KUD; 29] (Fig.  1). Smoothing factors significantly 
influence calculated estimates of activity space metrics 
using kernel methods [Fig.  5; 23, 27]. The fixed KUD 
method requires a single smoothing parameter (δ2) 
related to imprecision of relocation. Application of a sin-
gle, common smoothing parameter results in a standard-
ised output that can be directly compared across species 
and locations. For passive acoustic telemetry datasets, 
the δ2 parameter is related to the hydrophone detection 
range. The ATT uses a default value of 200  m which is 
a conservative estimate of the listening range for omni-
directional hydrophones used in most passive acoustic 
telemetry arrays [Fig.  5; 48, 49]. Smoothing parameters 
greater than 200  m in acoustic telemetry studies result 
in a correlative increase in the estimated spatial extent 
of activity space, suggesting over estimation (Fig.  5). 
Nevertheless, this smoothing parameter can also be 
user-defined if a more precise value of detection range is 
known, and to accommodate analysis of data from other 

telemetry technologies such as radio towers [detection 
range of ~ 1 – 20 km based on radio transmitters; 4] (see 
Appendix).

The BB-KUD method requires the selection of two 
smoothing factors related to speed of the animal and 
imprecision of relocations, δ1 and δ2, respectively. Param-
eterisation of the BB-KUD within the proposed approach 
can be undertaken by estimating the δ1 smoothing 
parameter using a maximum likelihood estimation pro-
cess based on a selected δ2 value [see 27]. The selection of 
smoothing factor when estimating activity space should 
be made considering passive tracking technology used 
(i.e. radio towers, acoustic telemetry) and information on 
the listening range of signal receivers used.

Case studies
Three case studies are presented for comparative spa-
tial analyses of dispersal and activity spaces across four 
species and multiple locations. Case studies include: (1) 
analysis of multiple species across multiple study sites; 
(2) analysis of multiple species within a single site; and 
(3) temporal patterns in activity space in multiple species 
across multiple sites. Data for case studies were sourced 
from the IMOS ATF database, a publicly accessible 
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online repository that stores raw detection data collected 
by researchers conducting animal movement studies 
in Australia. These data undergo strict quality control 
checks [12] and can be accessed through the Australian 
Ocean Data Network portal (AODN: https ://porta l.aodn.
org.au/). Metadata provide detailed information on tag 
type, sensors, release location, and biological attributes 
(e.g. species, sex, body length) of tagged animals.

Species selection and description
A subset of quality-controlled detection data from four 
species (Yellowfin Bream, Acanthopagrus australis n = 28 
tags; Yellowtail Kingfish, Seriola lalandi n = 24 tags; Grey 
Reef Shark, Carcharhinus amblyrhynchos n = 27 tags; and 
Bull Shark, Carcharhinus leucas n = 28 tags) were used. 
These species have been tagged by multiple research-
ers for multiple projects at multiple locations around 
Australia and are representatives of different functional 
movement classes [FMCs; 15]. Here, we illustrate the 
utility of the ATT for examining activity space across dif-
ferent FMCs.

Yellowfin Bream (Acanthopagrus australis) are a 
temperate marine estuarine-opportunist fish distrib-
uted across eastern Australia, classified primarily in the 
‘occasional’ FMC as individuals are site-attached with 
occasional medium level dispersals (~ 2  km) [15]. Yel-
lowtail Kingfish (Seriola lalandi) are a wide-ranging 
coastal pelagic predatory species distributed throughout 
the sub-tropical and temperate waters of the southern 
hemisphere and have been tracked at multiple locations 
with movement patterns classifying them within the 
‘occasional’ FMC [15]. Grey Reef Sharks (Carcharhinus 
amblyrhynchos) have been monitored at multiple reef 
habitats around Australia (e.g. fringing reef systems, reef 
atolls), with detection and movement data classify them 
within the ‘resident’ FMC, where individuals were highly 
site-attached with very low levels of dispersal between 
adjacent reef systems [15]. Bull Sharks (Carcharhinus 
leucas) have been monitored at multiple locations with 
data revealing individuals undertaking nomadic, long dis-
tance migrations between tropical and temperate regions 
[30], classifying them within the ‘roamer’ FMC [15].

Species comparisons
In case study 1, dispersal and activity space metrics were 
compared between four species monitored on the IMOS 
ATT network at multiple locations around Australia. 
The standardisation framework and ATT were used to 
calculate metrics of dispersal between consecutive raw 
detections (range, median, 25% and 75% quantiles of step 
distances) and activity space using COA estimates (50% 
and 95% BB-KUD) for the four selected species that were 
monitored at multiple sites around Australia (Fig.  2). 

Metrics calculated using a common smoothing param-
eter were compared within and between species, and 
sites using linear regression models weighted by the area 
covered by site-specific acoustic arrays. Two-way ANO-
VAs were then conducted using weighted linear regres-
sion models to assess differences in dispersal and activity 
space metrics between sites and species. Weighted mod-
els were created using the ‘lm’ function in the R stats 
package [25], with the area covered by site-specific arrays 
for each monitored individual included as a model weight 
(using the ‘weights’ parameter).

In case study 2, detection and activity space met-
rics were compared between three species (Yellowfin 
Bream n = 3, Yellowtail Kingfish n = 3, and Bull Sharks 
n = 3) monitored by multiple research projects within 
a single study site. The ATT was used to summarise 
detection metrics and estimate activity spaces of three 
species monitored within Sydney Harbour (S 33.847˚, E 
151.189˚). The area covered by the regional installation at 
Sydney Harbour includes ~ 418.7 km2 and covers the full 
extent of the Parramatta River and extends ~ 20 km north 
and south along the coast from the mouth of the catch-
ment (Fig. 3). Detection metrics, MCP area, and BB-KUD 
areas for three individuals of Yellowfin Bream, Yellowtail 
Kingfish, and Bull Sharks tagged and monitored within 
Sydney harbour were visually compared.

In case study 3, the ATT was used to examine differ-
ences in the rate species reach a stable activity space. 
MCPs were chosen to estimate a temporal threshold at 
which activity space stabilises instead of probability dis-
tribution methods (i.e. fixed KUD, BB-KUD) as meas-
ures of cumulative MCP are straightforward to interpret, 
and do not decay with increasing numbers of detec-
tions accumulated over time. Cumulative monthly MCP 
areas were calculated over the full monitoring period for 
all individuals from the four selected species (Yellow-
fin Bream n = 28, Yellowtail Kingfish n = 24, Grey Reef 
Shark n = 27, and Bull Shark n = 28). Increasing trends in 
cumulative activity space since tag release were assessed 
first by standardising monthly cumulative areas as a pro-
portion of full MCP area (i.e. MCP area estimated using 
full detection dataset for each individual). Species-spe-
cific asymptotic regression models were fitted to monthly 
cumulative MCP areas to quantify and compare patterns 
in activity space between the four species. MCP area 
doubling times and regression growth rates were esti-
mated using model coefficients and compared between 
species.
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