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Abstract

Background: Advances in bio-telemetry technology have made it possible to automatically monitor and classify
behavioural activities in many animals, including domesticated species such as dairy cows. Automated behavioural
classification has the potential to improve health and welfare monitoring processes as part of a Precision Livestock
Farming approach. Recent studies have used accelerometers and pedometers to classify behavioural activities in
dairy cows, but such approaches often cannot discriminate accurately between biologically important behaviours
such as feeding, lying and standing or transition events between lying and standing. In this study we develop a
decision-tree algorithm that uses tri-axial accelerometer data from a neck-mounted sensor to both classify biologically
important behaviour in dairy cows and to detect transition events between lying and standing.

Results: Data were collected from six dairy cows that were monitored continuously for 36 h. Direct visual observations
of each cow were used to validate the algorithm. Results show that the decision-tree algorithm is able to
accurately classify three types of biologically relevant behaviours: lying (77.42 % sensitivity, 98.63 % precision),
standing (88.00 % sensitivity, 55.00 % precision), and feeding (98.78 % sensitivity, 93.10 % precision). Transitions between
standing and lying were also detected accurately with an average sensitivity of 96.45 % and an average precision of
87.50 %. The sensitivity and precision of the decision-tree algorithm matches the performance of more computationally
intensive algorithms such as hidden Markov models and support vector machines.

Conclusions: Biologically important behavioural activities in housed dairy cows can be classified accurately using a
simple decision-tree algorithm applied to data collected from a neck-mounted tri-axial accelerometer. The algorithm
could form part of a real-time behavioural monitoring system in order to automatically detect dairy cow health and
welfare status.

Keywords: Behavioural classification, Decision-tree algorithm, Precision livestock farming, Tri-axial accelerometer, Reality
mining
Background
Over the past decade, there has been a huge increase in
the use of remote monitoring devices such as global po-
sitioning (GPS) trackers, location sensors, proximity log-
gers and accelerometers for automated recording of
both human and animal behaviour [1–16]. By necessity,
this has led to the need for more efficient and accurate
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methods of analysing the vast amounts of movement
and behavioural data that are being collected [17]. Data
from accelerometers have frequently been used to moni-
tor, classify and infer the behaviour of humans. For ex-
ample, hidden Markov models (HMMs) have been used
to classify human physical activity using data from accel-
erometers positioned at key points on the human body
[3]. In addition, accelerometers have been used in wear-
able digital sensors that can detect falls in elderly pa-
tients [4]. In many cases, there is high crossover
between the methodological approaches and objectives
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used to collect and classify behavioural data in humans
and animals. This has led to calls for a more integrated
approach for ‘reality mining’ of these data sets and for
more cross-fertilisation of ideas between disciplines [17].
An example of this more integrated approach is a recent
study by Banerjee et al. [18], who developed a method to
detect jumps in laying hens based on some of the key
features that are used to estimate forces during human
vertical jumps [19].
Due to their small size and weight, low cost and their

potential ability to record high resolution behavioural
data for days or months at a time, bio-loggers and bio-
telemetry devices are increasingly being used to monitor
the entire populations of animals in order to infer both
individual-level and social behaviour at a range of
spatio-temporal scales [17, 20]. Using algorithms for
reality mining of this type of individual and social behav-
ioural data can provide new insights into dynamic pro-
cesses such as disease transmission, as well as group
structure and hierarchy, cooperation between individuals
and other social behaviours [17]. One of the first studies
that used accelerometers to identify and classify behav-
ioural activities in free-ranging wild animals was under-
taken by Yoda et al. [21]. Subsequently, studies on wild
animals that specifically use tri-axial accelerometer data
have been undertaken. For example, Nathan et al. [5] il-
lustrated the general concepts and tools for using tri-
axial accelerometer data in free-ranging vultures, while
Resheff et aI. [6] developed a free-access web application
to classify such behaviours. Shepard et al. [15] used similar
methods to identify a range of movement behaviour pat-
terns across different wild animal species, and McClune
et al. [22] specifically applied such techniques to quantify
and automatically interpret behaviour in the Eurasian
badger (Meles meles). The use of tri-axial accelerometers
to determine behaviour has also been undertaken with do-
mesticated animal species. Moreau et al. [7] used a thresh-
old value approach with tri-axial accelerometer data to
classify three different behaviours in goats. Martiskainen
et al. [8] developed a method that uses accelerometer data
and multiclass support vector machines (SVM) to auto-
matically classify several behaviours in dairy cows. In a
similar study, Robert et al. [9] implemented a decision-
tree algorithm to classify different behaviours in cattles.
Although these approaches all demonstrate the potential
for this type of technology, there nevertheless remain a
number of limitations to be overcome. For example, in [7]
the true recognition, sensitivity was relatively low for some
of the observed behaviours, specifically a sensitivity level
of 68–93 % for resting and 20–90 % for walking. In [8], be-
havioural classification, results were poor for lying down
(0 % sensitivity, 0 % precision) and standing up (71 % sen-
sitivity, 29 % precision). In addition, the SVM algorithm
used in [8] has a large computational cost. Finally, in [9], it
was not possible to classify feeding behaviour due to the
use of a leg-mounted accelerometer.
In general, studies that use accelerometers in order to

infer animal behaviour collect and store data in one of two
ways. Devices that store information internally for poster-
ior acquisition are generally known as “bio-loggers” [17].
Such devices typically consume very little power, and
hence, battery life is very rarely a problem over short to
medium timescales. However, the fact that the accelerom-
eter data is only stored internally (typically on a memory
card within the sensor) means that the animal must be
recaptured to recover the data; in addition, the amount of
data that can be collected is limited by the size of the
memory card within the device. Devices that transmit
information to a central data receiver for subsequent pro-
cessing are known as “bio-telemetry sensors” [17]. Bio-
telemetry devices have the advantage that the animal does
not need to be recaptured to access the accelerometer data
and, as data do not need to be stored on the device, there
is no limit (in principle) to the amount of data collected.
However, a major issue with bio-telemetry devices is the
power drain created as a result of sending and receiving
data to the central receiver. This means that a bio-
telemetry device will typically have a much shorter battery
life than a bio-logger. One potential approach to overcome
the issue of battery drain caused by sending and receiving
large data sets is to undertake some form of preliminary
processing of the accelerometer data on the bio-telemetry
device itself. However, implementing such an approach in
practice remains a major challenge due to limited available
processing power and memory on the device and the add-
itional drain on battery life caused by the processing of the
data. Methods recently proposed for automatic behav-
ioural classification in animals are mainly based on differ-
ent machine-learning algorithms such as decision-trees
[6, 10, 22], k-means [11], SVM [8], and HMMs [23, 24].
SVM and HMMs come with large computational costs,
which make implementation of such an algorithm inside a
bio-telemetry device impractical. However, decision-trees
have a much lower computational cost and can easily be
implemented in real time. Hence, decision-trees may rep-
resent a good candidate for an algorithm to be imple-
mented within a bio-telemetry device.
If an accurate behavioural monitoring system is in

place, then information about individual and social be-
haviour (and potential changes in such behaviour) could
subsequently be used as indicators of health, welfare and
reproductive status. For example, acceleration data has
been used in a self-learning classification model in order
to predict oestrus status in dairy cows [25]. Similarly, the
frequency of transitions between standing up and lying
down has been suggested as a possible indicator of
forthcoming calving [26]. In addition, several studies
have found significant differences in lying, standing and
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feeding behaviour between healthy and diseased cows.
For example, González et al. [27] observed changes in
short term feeding behaviour during the onset of dis-
eases such as ketosis and chronic lameness. Palmer et al.
[28] observed that during lactation, cows that were se-
verely lame ate fewer, larger meals and had shorter feeding
times. Medrano-Galarza et al. [29] observed behavioural
changes in lying behaviour and at milking times for cows
with mild clinical mastitis. Blackie et al. [30] found signifi-
cantly longer lying down and significantly shorter standing
times for lame cows. Hence, by monitoring behaviour in
real-time and observing changes in lying, standing and
feeding, it may be possible to detect some of the most
common diseases in cattle.
In this study, we develop a decision-tree algorithm

that uses tri-axial accelerometer data from a neck-
mounted sensor to classify biologically important behav-
iour in dairy cows such as lying, standing and feeding
and to detect transition events between lying and stand-
ing. We show that the sensitivity and precision of the
Fig. 1 Sensor position, orientation and orientation changes when lying and sta
the neck of the cow. b Schematic figure of the coordinate frame of the sensor
cow is wearing a neck collar with attached sensor, a change in the acceleration
right. A change in the acceleration in the y-axis measures the forward and back
the sidewise rotation of the neck. c Example of the orientation of the sensor w

gravitation acceleration varies according to gy
→¼ g � cos 180−βð Þ where β is

the orientation of the sensor when a cow is observed lying. The component g
decision-tree algorithm matches the performance of
more computationally intensive algorithms such as
HMMs and SVMs. The algorithm functions in real-time
and, given its simple structure, could feasibly be imple-
mented directly in a remote sensor unlike more compu-
tationally intensive algorithms. We discuss how the
algorithm could be extended to infer activity time bud-
gets, behavioural bout duration and frequency of transi-
tions. Finally, we discuss how this type of real-time
behavioural monitoring could play a role in automated
detection of dairy cow health and welfare status as part
of a Precision Livestock Farming system.

Results
The tri-axial acceleration data were collected from six
housed dairy cows wearing a neck collar with tag sensors
from the Omnisense Series 500 Cluster Geolocation Sys-
tem [31] as shown in Fig. 1a, b. The sensors contain an
accelerometer that records tri-axial acceleration continu-
ously at 50 Hz. The acceleration data were collected
nding. a Orientation and location of the neck collar mounted sensor on
with X forwards, Y right and Z down according to the illustration. When a
in the x-axis corresponds to a sidewise movement to the left or to the
ward movements while changes in the acceleration in the z-axis measure
hen a cow is observed standing. The component in the y-axis of the

the angle in degrees of the sensor relative to the horizontal. d Example of

y

→
will be different from standing as the angle α for lying is bigger than β
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from each cow continuously for 36 h. Direct visual ob-
servations of the cows were also recorded for a total of
33 h and 25 min in order to validate and quantify the
sensitivity and precision of each algorithm.

Summary of decision-tree algorithm performance
The decision-tree algorithm uses two thresholds to classify
tri-axial acceleration data as either feeding (high activity)
or lying or standing (both low activity). Figure 2 shows the
structure of the decision-tree, while further explanation
of the algorithm and a systematic study of the effect of
window size and threshold values used are given in
Additional file 1.
The classification performance of the decision-tree al-

gorithm can be summarised in a confusion matrix,
where each column represents the predicted behaviour
from the algorithm and each row represents the ground
truth observed behaviour. Table 1 shows the confusion
matrix obtained by using the decision-tree algorithm
with 1-min (2003 data points), 5-min (401 data points)
and 10-min (200 data points) window sizes and with de-
cision threshold values of 0.0413 g (threshold A) and
Fig. 2 Decision-tree algorithm used for the classification of behaviours
in dairy cows. Decision rules are evaluated downwards until the final
behavioural class is assigned. The scheme contains the feature
characteristic used as data input for the decision rule to partition
the data. At each decision rule, data is partitioned into clusters
with similar properties. The first decision rule in this algorithm
discriminates between high and low energy expenditure activities
using the overall dynamic body acceleration (VeDBA). High energy
expenditure activities are classified as feeding. Low energy expenditure
activities are further classified using a second decision rule which
discriminates data by the static component of the acceleration in the
y-axis (SCAY). Data with values above threshold B (−0.055 g) are
classified as standing and data with values below this threshold are
classified as lying
−0.055 g (threshold B). With all window sizes, feeding is
classified highly accurately by the decision-tree algo-
rithm. However, it is clear that the decision-tree algo-
rithm has a tendency to misclassify standing behaviour
as lying (and vice versa). Hence, it seems clear that the
behaviours that are most likely to be misclassified are
those that have the most similarity in the relative neck
movements of the cow (see Fig. 1). Note also that the
number of standing events is significantly lower than the
number of lying or feeding events.

Comparative study of algorithm performance
To test the relative performance of our simple
decision-tree algorithm, we directly compared its per-
formance to alternative classification algorithms such
as a k-means algorithm, a HMM and a SVM algorithm.
The performance comparison was made using the same
initial input data for all four algorithms and with 1-
min, 5-min and 10-min window sizes. In the decision-
tree algorithm, values of 0.0413 and −0.055 g were used
for threshold A and B, respectively. The HMM also re-
quired initial values for the transition probability, initial
distribution and emission distribution; the initialisation
of these parameters and the selection of the training
and testing sets for all the algorithms is further ex-
plained in Additional file 1.
Table 2 summarises the performance of the four dif-

ferent classification algorithms. For all window sizes,
the highest overall sensitivity was obtained with the
decision-tree algorithm (83.94 % for 1-min window,
86.66 % for 5-min window and 88.06 % for 10-min win-
dow). In contrast, the SVM algorithm achieved the
highest overall precision for all window sizes (85.89 %
for 1-min window, 87.72 % for 5-min window and 87.52
% for 10-min window). In general, the overall sensitivity
and overall precision increased with window size for all
the algorithms considered (the only exception being the
precision of the k-means algorithm which decreased
from 84.80 to 81.84 % when moving from a 5-min to a
10-min window). In general, the best classification per-
formance for each behaviour was obtained using the
decision-tree algorithm (sensitivity) or the SVM (precision).
The HMM generally performed reasonably well but typic-
ally had lower sensitivity and precision than the decision-
tree and SVM algorithms, except at the 10-min window
size where it has the best performance for standing sensitiv-
ity (100 %) and lying precision (92 %). The k-means algo-
rithm generally had the worst overall performance,
although it performed well for feeding sensitivity (99.36 %)
and lying precision (98.10 %) at the 5-min window size.
The decision-tree algorithm matched or exceeded the per-
formance of the other (more computationally expensive) al-
gorithms for classification sensitivity. The decision-tree
algorithm did not perform as well as the SVM for



Table 1 Confusion matrix obtained for the classification of dairy cow behaviour with the decision-tree classification algorithm

Observed behaviour Predicted behaviours Total number of observations

1-min window Lying Standing Feeding

Lying 74.09 22.27 3.64 988

Standing 8.96 82.08 8.96 279

Feeding 0.14 4.21 95.65 736

2003

5-min window

Lying 74.09 21.76 4.15 193

Standing 5.77 88.46 5.77 52

Feeding 0.0 2.56 97.44 156

401

10-min window

Lying 77.42 18.28 4.30 93

Standing 4.0 88.0 8.0 25

Feeding 0.0 1.22 98.78 82

200

The results were obtained using a 1-min, 5-min and 10-min window size and with values of 0.0413 and −0.055 g for threshold A and B, respectively. The values
given in the main part of the table correspond to the percentage of observations classified for each behaviour. The final column gives the total number of validated
observations (data points) for each behaviour
Values marked in bold indicate the classification sensitivity for each behaviour
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classification precision, but was comparable to the k-means
and HMM in this regard.

Decision-tree algorithm classification at the individual-level
Performance of the decision-tree algorithm was also
analysed at the level of the individual cow (Table 3). For
this analysis, a 1-min window size was used to avoid
having too few data points for each individual cow;
values of 0.0413 and −0.055 g were used for threshold A
and B, respectively. Cow 1b (i.e. cow 1 on day 2) was
not observed standing at any point during the observa-
tion period. In general, classification of feeding showed
the smallest variation in sensitivity across individual
cows (sensitivity 78.49–100 % and precision 27.59–100
%). Classification of lying showed wider variation for
sensitivity (21.82–100 %) but less variation for precision
(89.91–100 %). The widest variation, in both sensitivity
and precision, for the three different behaviours was ob-
tained for standing (sensitivity and precision 0–100 %).
These results match with the previous analysis (Table 1),
suggesting that standing is the behaviour most likely to
be misclassified. Comparing individual cows on succes-
sive days, it seems likely that the decision-tree algorithm
consistently performed better with particular cows. For
example, comparing the lying sensitivity of cow 4 (100 %
day 1, 85.59 % day 2) or cow 6 (85 % day 1, 100 % day 2)
with cow 3 (21.82 % day 1, 60.27 % day 2), it is clear that
there may be a consistent misclassification of this behav-
iour in cow 3. There are also day to day variations in the
sensitivity, which could be due to individual differences
in how the accelerometer sensor was positioned on the
cow or due to different individual cow behaviour (e.g. if
the cow does not raise its neck as high as other cows
when standing or feeding).
Transition events between lying and standing
Transitions from standing-to-lying or lying-to-standing
were relatively infrequent throughout the observation
period: only 23 transition events were observed of which
13 were lying-down events and 10 were standing-up
events. These 23 transition events were used to test the
performance of the transition detection algorithm. In the
first step of the algorithm, transition events are detected
without distinguishing between lying down and standing
up. Subsequently, when a transition event has been de-
tected, the decision-tree classification algorithm de-
scribed in the previous sections is used to classify the
behaviour either side of the transition and hence dis-
criminate between lying-down events and standing-up
events. Further details can be found in Methods section
and in Additional file 1.
From Table 4, it is clear that the transition detec-

tion algorithm can accurately detect transition events
(95.45 % sensitivity, 87.5 % precision) without distin-
guishing between the different types of transitions. How-
ever, it performs less well when trying to classify the
transition events as lying down (66.67 % sensitivity, 83.33 %
precision) or standing up (63.64 % sensitivity, 70 %
precision).



Table 2 Performance comparison of four different machine-learning algorithms using the same input data set

Behaviour Performance metric Classifier algorithm

1-min window Decision-tree K-means HMM SVM

Lying Sensitivity 74.09 85.93 90.17 92.91

Precision 96.57 91.88 85.41 89.65

Standing Sensitivity 82.08 59.50 38.35 51.65

Precision 47.01 29.28 37.28 77.01

Feeding Sensitivity 95.65 59.92 83.83 98.01

Precision 92.03 86.13 91.54 91.01

Overall Sensitivity 83.94 68.45 70.78 80.85

Precision 78.53 69.09 71.41 85.89

5-min window

Lying Sensitivity 74.09 55.37 80.31 92.91

Precision 97.95 98.10 94.51 91.66

Standing Sensitivity 88.46 69.23 76.92 60.89

Precision 47.92 69.23 54.05 79.15

Feeding Sensitivity 97.44 99.36 97.44 98.29

Precision 93.25 87.08 93.25 92.36

Overall Sensitivity 86.66 74.65 84.89 84.03

Precision 79.71 84.80 80.60 87.72

10-min window

Lying Sensitivity 77.42 80.65 70.97 89.60

Precision 98.63 96.15 100.00 93.35

Standing Sensitivity 88.00 76.00 92.00 68.00

Precision 55.00 59.38 50 76.04

Feeding Sensitivity 98.78 98.78 100 100.00

Precision 93.10 90.00 93.18 93.18

Overall Sensitivity 88.06 85.14 87.65 85.86

Precision 82.24 81.84 81.06 87.52

Performance measures (sensitivity and precision) were obtained using 1-min, 5-min and 10-min windows. HMM refers to the hidden Markov model, and SVM
refers to the support vector machine algorithm. Overall sensitivity is calculated as the arithmetic mean sensitivity for the three behaviours. Overall precision is
calculated in a similar manner
Values marked in bold indicate the best performing algorithm for each behaviour classification

Vázquez Diosdado et al. Animal Biotelemetry  (2015) 3:15 Page 6 of 14
Discussion
Analysis of behaviour and behavioural changes has been
suggested as a potential way to indirectly monitor health
and welfare of dairy cows [27–30], and several auto-
mated systems have been proposed to identify different
biologically important behaviours [8, 9]. In this study, we
have developed a simple decision-tree classification algo-
rithm that uses tri-axial accelerometer data from a neck-
mounted sensor to accurately classify biologically relevant
behaviours such as lying (77.42 % sensitivity, 98.63 % pre-
cision), standing (88.00 % sensitivity, 55.00 % precision)
and feeding (98.78 % sensitivity, 93.10 % precision). A fur-
ther algorithm can detect transition events between lying
and standing or vice versa (95.45 % sensitivity and 87.50 %
precision when transition events are not classified as lying
down or standing up specifically). The main decision-tree
classification algorithm performs at least as well as more
complex algorithms, such as HMMs or SVMs but is much
simpler and less computationally expensive than these ap-
proaches and hence may be suited for direct incorporation
in the sensor itself. The decision-tree algorithms use in-
tuitive and easy to interpret characteristics of the bio-
mechanics of behaviour based on the static component
of the acceleration in the y-axis (SCAY) or the overall
vectorial dynamic body acceleration (VeDBA). The pa-
rameters used in the algorithms (window size and
threshold values) were explored using a single data set
(see Additional file 1 for full details), but the approach
could be adapted to construct similar algorithms in dif-
ferent contexts or for different data sets. The output of
the behavioural classification and transition detection
algorithms can be extended to infer activity budgets,



Table 3 Performance of the decision-tree classification algorithm
across individual cows

Cow Lying Standing Feeding

Sensitivity Precision Sensitivity Precision Sensitivity Precision

1a 91.59 89.91 80.65 84.75 91.30 93.33

1b 69.62 98.21 No obs 0 100 75.38

2 71.17 94.05 68.75 68.75 92.54 92.54

3a 21.82 100 100 27.59 100 27.59

3b 60.27 100 91.67 40.74 98.61 81.61

4a 100 95 95 100 93.75 100

4b 85.59 100 100 23.26 100 71.05

5a 66.67 100 0.00 0 88.89 53.33

5b 47.83 100 39.39 15.85 78.49 51.41

6a 85.00 100 100 85.19 100 84.62

6b 100 94.12 89.04 85.53 84.62 80.00

Results were obtained using a 1-min window and values of 0.0413 and -0.055
g for threshold A and B, respectively. Characters a (day 1) and b (day 2) after
the cow number correspond to the day the observations were recorded. For all
of the cows, observations were recorded over two successive days. For
cow number 2, no accelerometer records were collected in the second
day due to a battery failure in the sensor. No observations of standing
behaviour were recorded for cow 1 on day 2
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behavioural bout duration and frequency of transitions.
No behavioural classification algorithm will ever be free
from error, but our simple decision-tree algorithm per-
forms relatively accurately (in terms of sensitivity and
precision). The tri-axial accelerometers used in this
study (Omnisense Series 500 Cluster Geolocation Sys-
tem [31]) are one element of a more general wireless lo-
cation sensor network that can accurately track spatial
position of each cow. Although this feature was not
used in this study, it may be possible to combine accel-
erometer data with spatial location data to more accur-
ately determine real-time behaviour and behavioural
changes as part of an automated detection system for
dairy cow health and welfare status within a Precision
Livestock Farming approach.
The behaviours investigated in this study (lying, standing

and feeding) have been suggested as indicators of health
and welfare in dairy cows [27–30]. Using a neck-mounted
sensor, we are able to include feeding behaviour in the
repertoire of behaviours, something that is not usually
possible in studies that use leg-mounted sensors. The pos-
ition of the sensor on the body of the animal determines
Table 4 Performance of the detection algorithm for transitions
between standing and lying

Type of transition Sensitivity Precision

Non-specific 95.45 87.50

Standing up 63.64 70

Lying down 66.67 83.33

The non-specific transition refers to a behavioural transition that is detected
but without distinguishing between lying down and standing up
the behaviours that can be discriminated and multiple sen-
sors could potentially be used to improve the behavioural
classification [14]. The position of the sensor can also
affect the performance of the classification, as illustrated
by Moreau et aI. [7] who deployed sensors at different po-
sitions on the body of a goat when classifying grazing be-
haviour. The counterweights in the neck collars used in
this study help to reduce positional changes that can affect
the performance of the classification.
Sensitivity and precision were used as statistical mea-

sures of the performance of the algorithm. Both perform-
ance measures were validated and quantified through
direct visual observations of the cows. Performance of any
classification algorithm can depend on a range of factors
as discussed in [32]. In our case, the performance of the
decision-tree algorithm was explored in relation to the
choice of window size and the selection of threshold
values within the decision-tree. Window sizes below 60 s
showed a low overall sensitivity, particularly for feeding
behaviour (Additional file 1: Figure S1). At small window
sizes it may not be easy to perceive the regular up and
down movements of the cow’s neck while eating, which
will result in apparently low activity values (VeDBA) and
hence lead to misclassification. Classification performance
for lying and standing were very similar for all window
sizes but the best overall accuracies were found above 60
s. This result, along with the fact that visual observations
of bouts of behaviour of less than 60 s were rarely re-
corded, means that a window size above 60 s represents
the most appropriate choice. Tables 1 and 2 illustrate that
a small increase in the decision-tree classification algo-
rithm performance is obtained at the largest window size
of 10 min. Note also that the low values for precision are
likely related to the difficulty of distinguishing standing
from lying behaviour and also to the fact that there were
significantly less observations of standing behaviour than
lying behaviour for the cows in this study (Table 1). A
similar analysis was undertaken to explore the effect of the
threshold value used at each step of the decision-tree (see
Additional file 1), and values with the best overall per-
formance were selected (0.0413 and −0.055 g for thresh-
olds A and B respectively).
In addition to the parameter choice used within the al-

gorithm, behavioural variation across individual cows
could also have an effect on the classification perform-
ance [33], see Table 3. This behavioural variation might
explain the differences in the performance when apply-
ing the algorithm at the individual level. For example,
some cows may lie down or stand in different positions,
causing the algorithm to misclassify these two behav-
iours. Similarly, a cow strongly moving its head while
standing might be misclassified as feeding. In addition to
the behavioural variation, low numbers of behavioural
observations can also explain some of the low sensitivity
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and precision values obtained at the individual level (e.g.
cow 1 on day 2 was not observed standing at any point
during the observation period). Further investigations of
these variations should be undertaken if the decision-
tree algorithm is to be used for longitudinal studies in a
larger number of animals. In principle, and if long
enough time series of data are available, it should be
possible to train the decision-tree at the individual level
(so that each cow would have different values for thresh-
old A and B) and relative to their underlying behavioural
characteristics.
In an earlier study, Martiskainen et aI. [8] used a SVM

algorithm to classify eight different behaviours in cattle
(feeding, lying, standing, transitions between lying and
standing, plus two walking behaviours and ruminating
behaviour), while Robert et aI. [9] used a generalised
mixed linear model (GMLM) to classify only three be-
haviours (lying, standing, walking). Values on sensitivity
and precision were reported by Martiskainen et al. [8],
while Robert et al. [9] only reported the sensitivity (called
the ‘agreement’). Classification of standing (88 % sensitivity)
and feeding (98.78 % sensitivity) in our decision-tree classi-
fication algorithm compares well to the figures reported by
Martiskainen et al. [8] for their SVM (80 % sensitivity for
standing, 75 % sensitivity for feeding), although it should be
noted that when more behaviours are considered (as with
the eight behaviours considered in [8]) the individual
classification accuracy for each behaviour is likely to be
lower. Sensitivity for lying and standing was lower for
the decision-tree classification algorithm (77.42 and 88 %,
respectively), when compared to the GMLM reported in
[9] (99.2 and 98 %, respectively), although the decision-
tree is a much simpler algorithm. Walking was not in-
cluded in our study, while in [9] it was considered in the
behaviours; conversely, feeding behaviour was not in-
cluded in the GMLM algorithm in [9] since data was
collected using a leg-mounted sensor. Despite some ad-
vantages in terms of classification performance when
using SVM and GMLM algorithms, they remain diffi-
cult to implement and require much more computa-
tional power than a simple decision-tree algorithm.
Simplicity in our decision-tree comes from not only the
algorithm structure but also from the small number of
feature characteristics (VeDBA and SCAY). These are
based on parameters that are easy to use and to inter-
pret biologically.
The additional detection algorithm for transition

events between lying and standing (or vice-versa) pro-
vided a satisfactory sensitivity (95.45 %) and precision
(87.50 %) when detecting transitions without considering
the type (lying down or standing up). When the transi-
tion type was considered, both sensitivity and precision
decreased significantly (standing up, 63.64 % sensitivity,
70 % precision; lying-down, 66.67 % sensitivity, 83.33 %
precision). In a previous study, Martiskainen et al. [8] re-
ported a performance of 71 % sensitivity, 29 % precision
for standing up and 66.67 % sensitivity, 83.33 % preci-
sion for lying-down. Due to the limited observation time
period, only a small number of transitions were observed
in the present study. In future work, the algorithm could
be refined and validated by collecting observational data
over longer periods of time.
Using the output of the decision-tree algorithms de-

scribed in this study, statistical measures of the activity
budget, bout duration and frequency of transitions for each
cow (or the herd as a whole) can be computed (Table 1,
Figs. 3 and 4). Such measures can provide relevant informa-
tion about the behaviour and behavioural changes of cattle
over time and can potentially be used as indirect indicators
of the health and welfare of dairy cows as part of a Preci-
sion Livestock Farming approach [27–30].
Conclusion
Our results show that a simple decision-tree classifica-
tion algorithm that uses data from a neck-mounted tri-
axial accelerometer can classify, with a high level of ac-
curacy, biologically relevant behaviours in cattle such as
feeding, lying and standing. The decision-tree classifica-
tion algorithm matched the performance of other more
computationally intensive machine-learning algorithms.
The detection algorithm which proposed to distinguish
between lying-down and standing-up events also showed
satisfactory performance but needs further refinement
to improve accuracy. The decision-tree algorithm has
great potential for use directly within a sensor for real-
time calculations and monitoring of animal behaviour.
By extension, it would be feasible to determine activity
time budgets, bout durations and frequency of transi-
tions. Such a system could offer a new potential tech-
nology for the automated detection of health and
welfare problems in dairy cows. The specific decision-
tree algorithm we describe here could possibly be
adapted to work with other similar housed animal spe-
cies such as pigs. More generally, simple behavioural
classification algorithms can play a key role in auto-
mated behavioural detection within Precision Livestock
Farming.
Methods
Instruments
The acceleration data were collected using a wireless sen-
sor system (Ominsense Series 500 Cluster Geolocation
System [31]; http://www.omnisense.co.uk/) that in-
cludes an embedded tri-axial accelerometer (Xtrinsic
MMA8451Q 3-Axis, 14-bit/8-bit Digital Accelerometer
with a sensitivity between −8 and +8 g). Accelerometer
data was collected at 50 Hz which allowed for effective

http://www.omnisense.co.uk/


Fig. 3 Example time series of raw tri-axial accelerometer and its component outputs for lying, standing and feeding. a Example time series of the
raw tri-axial accelerometer output for observed periods of lying, standing and feeding for a single cow. The x-, y- and z-axis correspond to the
blue, green and red lines, respectively. When a cow is lying or standing, little change in the acceleration is registered because these two behaviours
exhibit little overall movement. The shifts in the acceleration observed when the cow is feeding are caused by the cow moving its head up and down.
b Output readings of the running mean of the acceleration in the y-axis and vectorial dynamic body acceleration (VeDBA) values under the
three different behaviours. These two parameters correspond to the static and dynamic components of the acceleration. There is a clear difference in
the VeDBA outputs between feeding and lying or standing. There is also a difference in the running mean between standing and lying which is caused
by a difference in the component in the y-axis of the gravity field (see also Fig. 1c, d)
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battery life of approximately 2 days. The wireless sensors
contain a 2.4 GHz, IEE 802.15.4a transmitter module to
remotely send messages to the CLS-504 location server.
The Series 500 sensors can be used to form a wireless
mesh sensor-node network that is able to compute relative
spatial locations of the sensor nodes using the arrival time
of periodic messages sent from each node to its neigh-
bours. In principle, acceleration data could be processed
on the sensor in real-time and outputs sent across the
network as part of a more general monitoring system.
However, in this study, only data from the tri-axial ac-
celerometer were recorded using a 4 GB micro SD flash
memory card for posterior data analysis. The sensors were
fixed in the same orientation on the right hand side of a
neck collar worn by the cows (Fig. 1a). Counterweights
(0.5 kg) were used on the neck collars to ensure a stable
position of the sensor on the body of the animal. The
sensor weighs approximately 0.25 kg in total (including
batteries), half the weight of the counterweight. The co-
ordinate frame of the sensors corresponds to X
forwards, Y right and Z down as shown in Fig. 1b). At
the end of the study, the SD card was removed from the
sensor and the accelerometer data was converted from
its hexadecimal format to g units (g = 9.81 ms−2).

Study site, animals and observation of behavioural
activities
The data collection was carried out on a commercial
farm of Holstein dairy cattle located in Essex, UK. The
cows where loose housed in a cubicle shed. The herd
was milked three times a day at approximately 5 a.m
(morning), 1 p.m (afternoon) and 9 p.m (evening). The
duration of milking time for each individual cow varied
between 1 and 1 ½ h. The herd mean 305-day milk yield
was 11,000 litres per cow. Cows were fed a commercial
total mixed ration. A total of six cows that had not
shown signs of severe lameness, or other disease that
might affect their behavioural repertoire, were selected
for this study. Cows were selected and collared during
morning or afternoon milking and were wearing the



Fig. 4 Examples of lying and standing transitions and results for their detection. a Example time series of the raw tri-axial accelerometer output for
standing up and lying down transitions. A rapid change in acceleration for all three axes can be observed. b Output of the results for the transition
detection algorithm. Values of the range of the y-axis above a predefined threshold determine if a transition has occurred. Visual observations are
displayed in green and prediction by the algorithm in red (“up” corresponds to standing up and “down” to lying down)
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collar for a maximum of 2 days (since battery of the sen-
sors could not be guaranteed after this point). Cows
were monitored between milking periods; during milk-
ing, no visual observations were recorded.
Cow behavioural activities were recorded by observers

(ZB and HH) performing a visual focal tracking on each
individual cow that was wearing a sensor collar accord-
ing to the following criteria for each behavioural activity:

1. Feeding (state): cows located at the feeding zone,
ingesting food;

2. Lying (state): cows located in a cubicle in a lying
down position;

3. Standing (state): cows standing on their four legs;
4. Lying down (transition): cows changing from a

standing state to a lying state;
5. Standing up (transition): cows rising from a lying

state to a standing state

Drinking, brushing and walking activities were ob-
served less frequently and for short durations and
therefore not considered for classification in the algo-
rithm. It should be stressed that these rarer activities
and events may still be biologically important in the
context of detecting health and welfare status. Hence,
although we do not try to classify them here, future
studies should also consider methods for detecting
these rarer behaviours.
From the data set of visual observations, only the

activities of interest for this study were selected to
validate the classifier algorithm. The new data set
used for validation contains the following observa-
tional data:

Cow 1: a total of 8 h and 2 min extracted from
observation on 28 August 2014, between 08:00–18:00;
29 August 2014, between 08:00–12:40
Cow 2: a total of 3 h and 6 min extracted from
observations on 28 August 2014, between 08:00–18:00
Cow 3: a total of 5 h and 40 min extracted from
observations on 3 September 2014, between 15:00–17:30;
4 September 2014, between 08:00–18:00
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Cow 4: a total of 5 h and 5 min extracted from
observations on 15 September 2014, between 15:30–18:30;
16 September 2014, between 07:40–17:40
Cow 5: a total of 6 h and 5 min extracted from
observations on 3 September 2014, between 15:10–17:10;
4 September 2014, between 08:00–18:10
Cow 6: a total of 5 h and 22 min 15 September 2014,
between 15:30–18:10; 16 September 2014, between
07:30–17:50

In total, direct visual observations of the cows were
completed for 33 h and 20 min, of which 15 h and 30
min were lying, 4 h and 10 min were standing and 13 h
and 40 min were feeding. All behavioural observations
were entered into a spreadsheet with the start and stop
time of every activity and identification of the corre-
sponding cow. Observer and sensor watches were syn-
chronised at the start of the observation period so that
observation data could be accurately aligned with the
tri-axial accelerometer data retrieved from the sensors in
a single database.

Algorithms for behavioural state classification
Raw acceleration data
Figure 3a illustrates example time series of the raw tri-
axial accelerometer output for observed periods of lying,
standing and feeding behaviour for a single cow. It is
clear that there is very little qualitative difference in the
acceleration output for the lying and standing behav-
iours, since for both these behaviours the cow exhibits
very little overall movement. When the cow is feeding
there is a clear regular shift in the acceleration in the y
and z axes that corresponds to the cow moving its head
up and down. Figure 3 is only a representative example
but similar qualitative patterns in the acceleration output
were observed for the other cows in the study. These
qualitative observations offer a useful intuitive starting
point for determining the most appropriate feature char-
acteristics to include in the classification algorithm.

Feature characteristics
Machine-learning algorithms use feature characteristics
(also called summary statistics) calculated from the input
data (e.g. the raw accelerometer data) to classify different
states (e.g. feeding, lying or standing). The algorithms in
this study have been developed using two intuitive and
easy to interpret characteristic features based on the bio-
mechanics of the movement behaviour of the cows. These
two feature characteristics consist of two different compo-
nents of the raw acceleration data: a static component
caused by the gravity field (SCAY) and a dynamic compo-
nent caused by the movement of the animal (vectorial dy-
namic body acceleration, VeDBA [34, 35]). Other studies
have used a far larger number of feature characteristics
(e.g. 30 or even higher) [5, 6, 8]. In our study, the use of
only two features was motivated by the need to reduce
computational time and complexity and also to allow
more intuitive biological interpretation of the results.
Figure 3b illustrates a typical example time series of

running mean in the y-axis and VeDBA output for ob-
served periods of lying, standing and feeding behaviour
for a single cow. Low VeDBA output values for lying
and standing are caused by the low movement exhibited
by cows during these behaviours. In contrast, high
VeDBA values obtained for feeding are caused by the
upward and downward head movement cows perform
during this behaviour. In this figure, it is also possible to
observe a small difference in the SCAY outputs between
lying and standing. Since the running mean in the y-axis
represents the static component caused by the gravity
field, output values obtained for this parameter corres-
pond to the orientation of the sensors during the behav-
iour as seen in Fig. 1c, d. Figure 1c shows an example of
the orientation of the sensor when the cow was observed
standing, while Fig. 1d shows the orientation of the sen-
sor when the cow was observed lying. The component

in the y-axis of the gravity field is given by gy
→¼ g � cos

180−βð Þ . Using this expression, a preselected threshold
of −0.055 g for the static component in the y-axis corre-
sponds to an angle of β = 86.84° (where an angle of β =
90° can be interpreted as the cow having its neck aligned
horizontally). Therefore, the decision-tree classifies stand-
ing and lying behaviour if the neck (and therefore sensor)
is above or below this threshold. Figure 1c, d are only rep-
resentative examples, but similar patterns in the static
component were found for other cows in this study.
The VeDBA and SCAY feature characteristics are calcu-

lated as a mean over a given moving window size centred
at the time point of interest (see Additional file 1). This re-
quires a moving window size to be specified before any al-
gorithm is run. A range of moving window sizes was
tested for each algorithm and we report results for sizes of
1, 5 and 10 min (Table 2). Results for other moving win-
dow sizes are explored for the decision-tree algorithm in
Additional file 1.
Machine-learning algorithms
There are a range of different machine-learning algo-
rithms that could be used to classify different animal be-
haviours. These algorithms can be described as either
supervised or unsupervised approaches. A supervised
learning algorithm is formed by two processes: training
and testing. A supervised learning algorithm uses a
known data set to construct a model (training process)
that is then used for making predictions on a new data
set (testing process). Unsupervised machine-learning
algorithms explore the data to find hidden patterns or
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to cluster the data input in classes with similar statis-
tical properties. In this study, the three following un-
supervised algorithms for the classification of the dairy
cow behaviours were used: decision-tree, k-means and
a HMM. The decision-tree was selected based on its
simple structure and low computational cost, making it
feasible to be implemented directly in a remote sensor.
The selection of the k-means algorithm was based also
on the simplicity of its structure and the possibility to
compare the decision-tree to methods with similar
levels of simplicity (although the k-means may have
high computational costs due to a recursive component
in the algorithm). The HMM was chosen in order to com-
pare the decision-tree performance with a more sophisti-
cated statistical model that is often used to classify animal
behavioural states [23, 24]. Finally, a supervised SVM algo-
rithm was also chosen in order to compare the decision-
tree performance to a more complex algorithm that has
been used for the classification of accelerometer data to
distinguish between different behaviours in dairy cows [8].
The decision-tree and k-means algorithms were custom
written by the authors in Matlab [36]. The HMM was ap-
plied using the Matlab toolbox for HMMs developed in
[37]. The SVM was applied using the machine-learning
toolbox provided in [38].
Decision-tree A full description of the decision-tree al-
gorithm used in this study is available in Additional file
1. We summarise the key features of the algorithm here.
The decision-tree algorithm uses two rules with associ-
ated thresholds to classify tri-axial acceleration data as
either feeding (high activity) or lying or standing (both
low activity). The first rule in the decision-tree uses the
mean of the VeDBA values and a predefined threshold A
to discriminate between cases with high and low energy
expenditure activities. Those cases resulting in a high
energy expenditure activity are labelled as feeding, and
those with low energy expenditure activities are used in
the second step of the decision-tree (Fig. 2). The second
decision rule of the tree compares the running mean of
the acceleration in the y-axis (SCAY) to a predefined
threshold B value in order to partition the data into two
clusters (mean of static component in the y-axis above
or below the threshold value). Cases resulting in values
below the threshold are labelled as lying, and those with
values above are labelled as standing (Fig. 2). A range of
different predefined threshold values were considered
(see Additional file 1), and values of A = 0.0413 g and B =
0.055 g were found to give the best performance with this
data set. Similarly, to explore the effect of the choice of
window size, the performance of the algorithm was inves-
tigated using windows ranging from 1–600 s (window
sizes above 600 s resulted in too few data points for a fair
comparison of performance) and full details are given in
Additional file 1.

k-means Observations for the k-means algorithm are
given by the 2-dimensional feature characteristics. The
first dimension is represented by the mean of the
VeDBA values over the window size, whereas the second
dimension is represented by the mean of the acceler-
ation in the y-axis (SCAY). The k-means algorithm dis-
criminates between the observations in one step using
both feature characteristics at the same time. This repre-
sents a key difference between the decision-tree and the
k-means, since the former uses one feature characteristic
at each decision rule. A full description of the k-means
algorithm is given in Additional file 1.

Hidden Markov model A sequence of behaviours in
dairy cows can be modelled as a first-order HMM with a
finite number of hidden states (behaviours) where each
activity can be observed through a set of characteristic
features (observations). The observations for the HMM
correspond to the same characteristic features used for the
decision-tree, i.e. mean of VeDBA over the window size
and running mean of the acceleration in the y-axis over
the window size (SCAY). The hidden Markov model was
applied using the Matlab toolbox for hidden Markov
models developed in [37]. This toolbox randomly gener-
ates an initial transition probability matrix A and an initial
probability π. The emission probability distribution B is
initialised using a static Gaussian Mixture model. Since
the results can depend on the initialisation parameters, we
run a total of 100 random initialisations to select the high-
est scoring model. Further details of the implementation,
use and application of the Baum-Welch, the Viterbi and
the forward-backward algorithms for HMMs can be found
in [39], and further details are given in Additional file 1.

Support vector machines SVMs are a supervised learn-
ing algorithm requiring training and testing processes.
In this study, training was performed using k-1 folds and
tested in the fold left out. We used a 3-fold cross valid-
ation for the implementation of the SVM algorithm. Fur-
ther details of the SVM algorithm are provided in
Additional file 1 and can also be found in [38, 40–42].

Performance of the classification algorithm
Comparison of algorithm classification performance
The performance of the decision-tree classification algo-
rithm was compared across a range of values for the
algorithm parameters (window size, thresholds A and B);
for details see Additional file 1. The performance of the
algorithm was directly compared to alternative classifica-
tion algorithms such as k-means, HMM and SVM using
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the same input data set (Table 2). The performance of
an automated behavioural classification algorithm can
often vary across individuals or breeds of the same spe-
cies [33]. Hence, we also considered the performance of
the decision-tree algorithm at the level of the individual
cow. In order to do this, we computed the performance
metrics for each individual cow at a window size of 1
min (Table 3). The 1 min window was selected in this
context to avoid having only a small number of samples
for each individual cow (which can occur at larger win-
dow sizes).

Sensitivity and precision
When comparing algorithm classification performance,
we considered two performance metrics: the sensitivity
of classification and the precision of classification. In
standard statistical process control, the sensitivity (Sen)
and precision (Pre) are defined as:

Sen ¼ TP

TPþ FN
;

Pre ¼ TP

TPþ FP
:

Here, TP (true positive) is the number of instances
where the behavioural state of interest that was correctly
classified by the algorithm after validation by the visual
observer. FN (false negative) is the number of instances
where the behavioural state of interest was visually ob-
served in reality but was incorrectly classified as some
other behaviour by the algorithm. FP (false positive) is
the number of times the behavioural state of interest
was (incorrectly) classified by the algorithm but not ob-
served in reality. TN (true negative) is the number of in-
stances where the behavioural state of interest was
(correctly) classified as not being observed.

An algorithm for detection of transitions between lying
and standing
A further two-step algorithm was developed to detect
the transitions between lying and standing (Table 4).
The first step of the algorithm (non-specific) uses a
threshold over the range of the acceleration in the y-axis
to determine if a transition occurs or not. Range in the
y-axis represents a good candidate for the threshold due
to the biomechanics of the rapid change in this axis
when cows exhibit a transition between lying and stand-
ing or vice-versa. As described by Martinskainen et al.
[8], a cow that lies down bends one front leg, lowers its
forequarters then its hindquarters until it settles into a
lying position. When a cow stands up, it lunges forward,
lifts its hindquarters, then rises to stand up on its four
legs. According to this definition and the orientation of
the sensors in Fig. 1a, b, a transition movement implies
a significant change in the orientation of the sensor in
the y-axis (Fig. 4a).
The second step of the transition detection algorithm

is performed by applying the decision-tree classification
algorithm described previously to infer the anterior and
posterior behaviour on either side of the transition and
hence discriminate between standing up and lying down.
Further details of the transition detection algorithm are
given in Additional file 1.

Availability of supporting data
The data collected as part of this study is available in
Additional file 2.

Additional files

Additional file 1: Methods to develop an algorithm for behavioral
state classification. Further details of the decision-tree, k-means, HMM
and SVM algorithms, results from a systematic exploration of the
decision-tree parameters (window size and threshold values), and further
details of the transition detection algorithm.

Additional file 2: Feature characteristics for classification. The
feature characteristics used in this study to classify the three different
behaviours using a 1-min, 5-min and 10-min window size (data from 6
dairy cows over a 3-day period).
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